1. The product of 58.25(4) means Lenard will have an additional $233 saved 4 weeks from now.
2. The product of 58.25(–3) means Lenard had $174.75 less 3 weeks ago.
The concept of saving $58.25 per week was adopted by Lenard.
On this note, after every week, Lenard will have $58.25 more than she had the previous week.
In essence, every week from now adds up $58.25 to Lenard's balance and every week ago takes off $58.25 from his current balance.
Read more on products:
brainly.com/question/10873737
Answer:
4 : 9 is an equivalent ratio of 8 : 18.
Step-by-step explanation:
hope this helps
Answer:
m/4
Step-by-step explanation:
m is how many children are playing.
They are separated into 4 groups. Making it m(how many people are playing), out of 4.
For example, if m=12, then it would be 12/4, so 3 children will be in each group.
Hope this helps, you can change this to you own desire.
Answer:
P(x) =x³-4x²-31x+70
Step-by-step explanation:
The function is expressed as:
P(x) = (x+5)(x-2)(x-7)
P(x) =(x²-2x+5x-10)(x-7)
P(x) = (x²+3x-10)(x-7)
P(x) = x³-7x²+3x²-21x-10x+70
P(x) =x³-4x²-31x+70
Hence the polynomial is P(x) =x³-4x²-31x+70
Answer:
The probability that it will choose food #2 on the second trial after the initial trial = 0.3125
Step-by-step explanation:
Given - A lab animal may eat any one of three foods each day. Laboratory records show that if the animal chooses one food on one trial, it will choose the same food on the next trial with a probability of 50%, and it will choose the other foods on the next trial with equal probabilities of 25%.
To find - If the animal chooses food #1 on an initial trial, what is the probability that it will choose food #2 on the second trial after the initial trial?
Proof -
By the given information, we get the stohastic matrix
![H = \left[\begin{array}{ccc}0.5&0.25&0.25\\0.25&0.5&0.25\\0.25&0.25&0.5\end{array}\right]](https://tex.z-dn.net/?f=H%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0.5%260.25%260.25%5C%5C0.25%260.5%260.25%5C%5C0.25%260.25%260.5%5Cend%7Barray%7D%5Cright%5D)
As we know that,
The matrix is a Markov chain 
Let
The initial state vector be
![x_{0} = \left[\begin{array}{ccc}1\\0\\0\end{array}\right]](https://tex.z-dn.net/?f=x_%7B0%7D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%5C%5C0%5C%5C0%5Cend%7Barray%7D%5Cright%5D)
we choose this initial vector because given that If the animal chooses food #1 on an initial trial.
Now,
![x_{1} = Hx_{0} \\ = \left[\begin{array}{ccc}0.5&0.25&0.25\\0.25&0.5&0.25\\0.25&0.25&0.5\end{array}\right]\left[\begin{array}{ccc}1\\0\\0\end{array}\right] \\= \left[\begin{array}{ccc}0.5\\0.25\\0.25\end{array}\right]](https://tex.z-dn.net/?f=x_%7B1%7D%20%3D%20Hx_%7B0%7D%20%5C%5C%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0.5%260.25%260.25%5C%5C0.25%260.5%260.25%5C%5C0.25%260.25%260.5%5Cend%7Barray%7D%5Cright%5D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%5C%5C0%5C%5C0%5Cend%7Barray%7D%5Cright%5D%20%5C%5C%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0.5%5C%5C0.25%5C%5C0.25%5Cend%7Barray%7D%5Cright%5D)
∴ we get
![x_{1} = \left[\begin{array}{ccc}0.5\\0.25\\0.25\end{array}\right]](https://tex.z-dn.net/?f=x_%7B1%7D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0.5%5C%5C0.25%5C%5C0.25%5Cend%7Barray%7D%5Cright%5D)
Now,
![x_{2} = Hx_{1} \\ = \left[\begin{array}{ccc}0.5&0.25&0.25\\0.25&0.5&0.25\\0.25&0.25&0.5\end{array}\right]\left[\begin{array}{ccc}0.5\\0.25\\0.25\end{array}\right] \\= \left[\begin{array}{ccc}0.25+0.0625+0.0625\\0.125+0.125+0.0625\\0.125+0.0625+0.125\end{array}\right]\\= \left[\begin{array}{ccc}0.375\\0.3125\\0.3125\end{array}\right]](https://tex.z-dn.net/?f=x_%7B2%7D%20%3D%20Hx_%7B1%7D%20%5C%5C%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0.5%260.25%260.25%5C%5C0.25%260.5%260.25%5C%5C0.25%260.25%260.5%5Cend%7Barray%7D%5Cright%5D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0.5%5C%5C0.25%5C%5C0.25%5Cend%7Barray%7D%5Cright%5D%20%5C%5C%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0.25%2B0.0625%2B0.0625%5C%5C0.125%2B0.125%2B0.0625%5C%5C0.125%2B0.0625%2B0.125%5Cend%7Barray%7D%5Cright%5D%5C%5C%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0.375%5C%5C0.3125%5C%5C0.3125%5Cend%7Barray%7D%5Cright%5D)
∴ we get
![x_{2} = \left[\begin{array}{ccc}0.375\\0.3125\\0.3125\end{array}\right]](https://tex.z-dn.net/?f=x_%7B2%7D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0.375%5C%5C0.3125%5C%5C0.3125%5Cend%7Barray%7D%5Cright%5D)
∴ we get
The probability that it will choose food #2 on the second trial after the initial trial = 0.3125