The perimeter is given by:
P = 2x + 2y = 28
The area is given by:
A = x * y
Writing the area based on x we have:
A (x) = x * (14-x)
Rewriting:
A (x) = 14x-x ^ 2
Deriving we have:
A '(x) = 14-2x
We equal zero and clear x:
14-2x = 0
x = 14/2
x = 7
We are now looking for the other dimension:
y = 14-x
y = 14-7
y = 7
Answer: The length and width of a rectangle that has the given perimeter and a maximum area are:
y = 7 meters
The equation is:
I=100+12J+5T+7S+5H-8M
The given information is that I=197, J=5, T=5, H=3, and M=3, and we’re trying to solve for the amount of shorts (S) he sold.
We can plug in the variables into the equation:
(197)=100+12(5)+5(5)+7S+5(3)-8(3)
After simplification:
197=100+60+25+7S+15-24
We can add/subtract the constants:
197=100+60+25+7S+15-24
We will add/subtract the constants:
197=176+7S
We will subtract 176 from both sides of the equation to cancel it out and isolate 7S:
197-176=176-176+7S
21=7S
We will divide 7 from both sides of the equation to cancel it out and isolate S:
21/7=7S/7
3=S or S=3 with the symmetric property of Equality applied.
Therefore, he sold 3 pairs of shorts
Answer:
Don't know what the equation is but this is the rules is:
Subtract 4x from each side.
2. Simplify.
3. Subtract 2 from each side.
4. Simplify.
5. Divide each side by 5.
6. Simplify
Step-by-step explanation:
This is an example