So, this would be a common circle question.
First, 20 degrees from a circle's curcumference would be 20/360, which is 1/18.
This means that the length of the arc of AB should be 1/18 of the circumference.
The formula for the circumference it 2pi*r
2*pi*27=54pi
54pi* 1/18= 6 pi
Answer:
<h2><u>26°</u></h2>
Step-by-step explanation:
Assuming that your figure is a triangle, we should keep in mind that all the interior angles of a triangle add up to 180°, always.
So, we have the values of angles x and y as 90° and 64°.
90 + 64 = 154° ⇒ Add them up.
Now, subtract 154 from 180 to get ∠z.
180 - 154 = <u>26°</u>
Third option is the correct answer.
Answer:
Step-by-step explanation:
![y - y_1 = m(x - x_1) \\ \\ y - 0 = \bigg[ \frac{2b}{(2a - c)} \bigg] (x - c) \\ \\ y = \bigg[ \frac{2b}{(2a - c)} \bigg]x - \bigg[ \frac{2b}{(2a - c)} \bigg]c \\ \\ \purple { \boxed{ \bold{y = \bigg[ \frac{2b}{(2a - c)} \bigg]x - \bigg[ \frac{2bc}{(2a - c)} \bigg]}}} \\](https://tex.z-dn.net/?f=y%20-%20y_1%20%3D%20m%28x%20-%20x_1%29%20%5C%5C%20%20%5C%5C%20y%20-%200%20%3D%20%20%20%5Cbigg%5B%20%5Cfrac%7B2b%7D%7B%282a%20-%20c%29%7D%20%5Cbigg%5D%20%20%28x%20-%20c%29%20%5C%5C%20%20%5C%5C%20y%20%3D%20%5Cbigg%5B%20%5Cfrac%7B2b%7D%7B%282a%20-%20c%29%7D%20%5Cbigg%5Dx%20-%20%5Cbigg%5B%20%5Cfrac%7B2b%7D%7B%282a%20-%20c%29%7D%20%5Cbigg%5Dc%20%5C%5C%20%20%5C%5C%20%20%5Cpurple%20%7B%20%5Cboxed%7B%20%5Cbold%7By%20%3D%20%5Cbigg%5B%20%5Cfrac%7B2b%7D%7B%282a%20-%20c%29%7D%20%5Cbigg%5Dx%20-%20%5Cbigg%5B%20%5Cfrac%7B2bc%7D%7B%282a%20-%20c%29%7D%20%5Cbigg%5D%7D%7D%7D%20%5C%5C%20)