Answer:
Drawing the triangle:
H / x = tan 52.2 = 1.29
H / (4.6 - x) = tan 28.8 = .550
H = 1.29 x
H = .55 * 4.6 - .55 x
1.84 x = 2.53 combining equations
x = 1.38
4.6 - 1.38 = 3.22
Total base of triangle = 1.38 + 3.22 = 4.6
H / x = tan 52,2 = 1.29
H = 1.29 * 1.38 = 1.78 height of triangle
Check:
1.78 / 3.22 = tan 28.9
This agrees with the given value of 28.8
Answer:103 pounds
Explanation:
Given
width of window 
height of window 
standard atmospheric pressure 
Also 
Thus Net Force on the window will be the algebraic sum of Force due to outside and inside Pressure .



Answer:
distance between the dime and the mirror, u = 0.30 m
Given:
Radius of curvature, r = 0.40 m
magnification, m = - 2 (since,inverted image)
Solution:
Focal length is half the radius of curvature, f = 
f = 
Now,
m = - 
- 2 = -
= 2 (2)
Now, by lens maker formula:


v =
(3)
From eqn (2):
v = 2u
put v = 2u in eqn (3):
2u = 
2 = 
2(u - 0.20) = 0.20
u = 0.30 m
If a ball is if a ball is dropped from a 576ft building it would take about 8 seconds for it to hit the ground.
1. The balls move to the opposite direction but the same speed. This represents Newton's third law of motion.
2. The total momentum before and after the collision stays constant or is conserved.
3. If the masses were the same, the velocities of both balls after the collision would exchange.
4 and 5. Use momentum balance to solve for the final velocities.