In my opinion it does. The more water the pot holds, the longer you need to wait for it to freeze. Since there is more water, some parts may not be completely frozen. An experiment you can try is to get an ice cube container and a pot. fill both of them and put them in the freezer for the same amount of time. When you take it out, the ice cubes should be frozen leaving the pot with cold water.
Answer:
The slope of a position-time graph represents an object’s velocity.
Explanation:
In a position-time graph, the values on the x-axis represent the time, while the values on the y-axis represent the position of the object.
Velocity is defined as the ratio between the displacement of an object and the time taken:

However, we can see that this definition corresponds to the slope of the curve in a position-time graph. In fact:
, the displacement, corresponds to the difference in position, so the difference between the values on the y-axis: 
, the time interval, corresponds to the difference in times, so the difference between the values on the x-axis: 
So, the velocity is

which corresponds to the slope of the curve.
Rotational speed would increase...
v = omega . r
which means it's directly proportional to radius...
Answer: 1160 m
Explanation:
Speed = distance / time. Plug in 40 m/s for speed and 29 s for time in order to get the distance, 1160 m.
Answer:
F = 0.1575 N
Explanation:
When the third sphere touches the first sphere, the charge is distributed between both spheres, then now the first sphere has only half of his original charge.
In this moment then
Sphere one has a charge = Q/2
Sphere three has a charge = Q/2
Now when the third sphere touches the second sphere again the charge is distributed in a manner that both sphere has the same charge.
How the total charge is Q = Q/2 + Q = 3/2Q, when the spheres are separated each one has 3/4Q
Sphere two has a charge = 3/4Q
Sphere three has a charge = 3/4Q
The electrostatic force that acts on sphere 2 due to sphere 1 is:
F = 
F= 
how
= 0.42
Then
F = 
F = 0.1575 N