Explanation:
Most of the cell surface receptors and glycoproteins. These glycoproteins have active sites that recognize specific signals, like hormones, that initiate secondary signaling pathways inside of the cell, in response to the external signal. This is how cells respond to environmental stimuli.
If a change in glycoproteins makes them unable to bind signaling molecules (like hormones) or makes them permanently bind these molecules, there will definitely be a defect in how the cell responds to external stimuli. The cell will be, for example, be unable to respond to insulin in case of elevated blood sugar levels as is the case with diabetics.
Learn More:
For more on glycoproteins check out;
brainly.com/question/11473349
brainly.com/question/13602455
#LearnWithBrainly
A dietitian because a nutritionist will tell you if you are eating the right portions of food but a dietitian will tell you if you are eating the right food.
Answer:
Nutrients support vital functions, including growth, the immune, the central nervous system, and preventing disease.
Explanation:
Translation requires some specialized equipment. Just as you wouldn't go to play tennis without your racket and ball, so a cell couldn't translate an mRNA into a protein without two pieces of molecular gear: ribosomes and tRNAs.<span>Ribosomes provide a structure in which translation can take place. They also catalyze the reaction that links amino acids to make a new protein.</span><span>tRNAs (transfer RNAs) carry amino acids to the ribosome. They act as "bridges," matching a codon in an mRNA with the amino acid it codes for.</span>Here, we’ll take a closer look at ribosomes and tRNAs. If you're not yet familiar with RNA (which stands for ribonucleic acid), I highly recommend checking out the nucleic acids section first so you can get the most out of this article!Ribosomes: Where the translation happensTranslation takes place inside structures called ribosomes, which are made of RNA and protein. Ribosomes organize translation and catalyze the reaction that joins amino acids to make a protein chain.