1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
RideAnS [48]
3 years ago
13

PLEASE HELP WILL GIVE BRAINLIEST Which of the following scale factors will result in an enlargement? A. k < –1 B. –1 < k &

lt; 0 C. 0 < k < 1 D. k = 1
Mathematics
1 answer:
Sergio [31]3 years ago
5 0

Answer: OPTION A.

Step-by-step explanation:

By definition, a dilation can be an enlargement or a reduction of the shape.

An enlargement is when dilation creates a larger image and a reduction is when dilation creates a smaller image.

When, the scale factor is greater than 1, the image is an enlargement and when the scale factor is between 0 and 1, the image is a reduction.

It is important to know that with a negative scale factor the enlargement will will be inverted and it will also be on the other side of the center of dilation.

Knowing this, we can say that the scale factor that will result in an enlargement is:

k

You might be interested in
The length of a rectangle is twice its width. If the perimeter of the rectangle is 30m, find its area.
expeople1 [14]

Answer:

If the perimeter of the rectangle is 30cm , find its area. W=5 FOR THE WIDTH. 5*10=50 FOR THE AREA.

Step-by-step explanation:

6 0
3 years ago
Read 2 more answers
Aaron borrows $150 from his friend Austin. He has to pay the money back in 4 monthly installments. Each month he wants to pay ha
Y_Kistochka [10]
Austin should pay $75 the first month, and 37.50 for the remaining of the 2 months
5 0
3 years ago
What number makes a ratio equivalent to 7:15
nirvana33 [79]

Answer:

double those numbers:

14:30 is equivalent to 7:15

May I have brainliest please? :)

4 0
3 years ago
Match each vector operation with its resultant vector expressed as a linear combination of the unit vectors i and j.
Cloud [144]

Answer:

3u - 2v + w = 69i + 19j.

8u - 6v = 184i + 60j.

7v - 4w = -128i + 62j.

u - 5w = -9i + 37j.

Step-by-step explanation:

Note that there are multiple ways to denote a vector. For example, vector u can be written either in bold typeface "u" or with an arrow above it \vec{u}. This explanation uses both representations.

\displaystyle \vec{u} = \langle 11, 12\rangle =\left(\begin{array}{c}11 \\12\end{array}\right).

\displaystyle \vec{v} = \langle -16, 6\rangle= \left(\begin{array}{c}-16 \\6\end{array}\right).

\displaystyle \vec{w} = \langle 4, -5\rangle=\left(\begin{array}{c}4 \\-5\end{array}\right).

There are two components in each of the three vectors. For example, in vector u, the first component is 11 and the second is 12. When multiplying a vector with a constant, multiply each component by the constant. For example,

3\;\vec{v} = 3\;\left(\begin{array}{c}11 \\12\end{array}\right) = \left(\begin{array}{c}3\times 11 \\3 \times 12\end{array}\right) = \left(\begin{array}{c}33 \\36\end{array}\right).

So is the case when the constant is negative:

-2\;\vec{v} = (-2)\; \left(\begin{array}{c}-16 \\6\end{array}\right) =\left(\begin{array}{c}(-2) \times (-16) \\(-2)\times(-6)\end{array}\right) = \left(\begin{array}{c}32 \\12\end{array}\right).

When adding two vectors, add the corresponding components (this phrase comes from Wolfram Mathworld) of each vector. In other words, add the number on the same row to each other. For example, when adding 3u to (-2)v,

3\;\vec{u} + (-2)\;\vec{v} = \left(\begin{array}{c}33 \\36\end{array}\right) + \left(\begin{array}{c}32 \\12\end{array}\right) = \left(\begin{array}{c}33 + 32 \\36+12\end{array}\right) = \left(\begin{array}{c}65\\48\end{array}\right).

Apply the two rules for the four vector operations.

<h3>1.</h3>

\displaystyle \begin{aligned}3\;\vec{u} - 2\;\vec{v} + \vec{w} &= 3\;\left(\begin{array}{c}11 \\12\end{array}\right) + (-2)\;\left(\begin{array}{c}-16 \\6\end{array}\right) + \left(\begin{array}{c}4 \\-5\end{array}\right)\\&= \left(\begin{array}{c}3\times 11 + (-2)\times (-16) + 4\\ 3\times 12 + (-2)\times 6 + (-5) \end{array}\right)\\&=\left(\begin{array}{c}69\\19\end{array}\right) = \langle 69, 19\rangle\end{aligned}

Rewrite this vector as a linear combination of two unit vectors. The first component 69 will be the coefficient in front of the first unit vector, i. The second component 19 will be the coefficient in front of the second unit vector, j.

\displaystyle \left(\begin{array}{c}69\\19\end{array}\right) = \langle 69, 19\rangle = 69\;\vec{i} + 19\;\vec{j}.

<h3>2.</h3>

\displaystyle \begin{aligned}8\;\vec{u} - 6\;\vec{v} &= 8\;\left(\begin{array}{c}11\\12\end{array}\right) + (-6) \;\left(\begin{array}{c}-16\\6\end{array}\right)\\&=\left(\begin{array}{c}88+96\\96 - 36\end{array}\right)\\&= \left(\begin{array}{c}184\\60\end{array}\right)= \langle 184, 60\rangle\\&=184\;\vec{i} + 60\;\vec{j} \end{aligned}.

<h3>3.</h3>

\displaystyle \begin{aligned}7\;\vec{v} - 4\;\vec{w} &= 7\;\left(\begin{array}{c}-16\\6\end{array}\right) + (-4) \;\left(\begin{array}{c}4\\-5\end{array}\right)\\&=\left(\begin{array}{c}-112 - 16\\42+20\end{array}\right)\\&= \left(\begin{array}{c}-128\\62\end{array}\right)= \langle -128, 62\rangle\\&=-128\;\vec{i} + 62\;\vec{j} \end{aligned}.

<h3>4.</h3>

\displaystyle \begin{aligned}\;\vec{u} - 5\;\vec{w} &= \left(\begin{array}{c}11\\12\end{array}\right) + (-5) \;\left(\begin{array}{c}4\\-5\end{array}\right)\\&=\left(\begin{array}{c}11-20\\12+25\end{array}\right)\\&= \left(\begin{array}{c}-9\\37\end{array}\right)= \langle -9, 37\rangle\\&=-9\;\vec{i} + 37\;\vec{j} \end{aligned}.

7 0
3 years ago
PLEASE HELP! urgent! Write the equation of a line in a slope-intercept form and standard form
m_a_m_a [10]

Answer:

y = \frac{3}{4}x -3 --- Slope intercept

4y - 3x =- 12 --- Standard form

Step-by-step explanation:

Given

The attached linear graph

Required

The equation

Select any two points on the line

(x_1,y_1) = (0,-3)

(x_2,y_2) = (4,0)

Next, calculate the slope (m)

m = \frac{y_2 - y_1}{x_2 - x_1}

So, we have:

m = \frac{0 --3}{4 - 0}

m = \frac{3}{4}

The slope intercept is then calculated using:

y = m(x - x_1) + y_1

So, we have:

y = \frac{3}{4}(x - 0) -3

y = \frac{3}{4}(x) -3

y = \frac{3}{4}x -3

Multiply through bu 4

4y = 3x - 12

Subtract 3x from both sides

4y - 3x =- 12 --- Standard form

7 0
3 years ago
Other questions:
  • W + 19 = 49 and W = 30<br> O True<br> False
    15·2 answers
  • Earth has a radius of 6371 kilometers. A pilot is flying at a steady altitude of 5.6 kilometers above the earth's surface. What
    12·2 answers
  • What is the area of a square if one side is 25 feet long?
    15·2 answers
  • Set up an equation to show (×+2)×5=y
    13·1 answer
  • X^2-18x+209=2x+11 i can't solve it
    10·1 answer
  • In an arithmetic sequence, a1=5 and a6=-5. Determine an equation for an, the nth term of this sequence.
    13·1 answer
  • If 3x + 2y= 14 and 5x + 3y = 12, then find the value of 5x- y.
    10·1 answer
  • Solve for x.<br> that is all thats provided for the question
    15·1 answer
  • Help please and thank u
    10·1 answer
  • Which best explains whether a triangle with side lengths 2 in., 5 in., and 4 in. is an acute triangle?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!