1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MArishka [77]
4 years ago
12

14x – 2y = 1 2x - Y= -2

Mathematics
1 answer:
Naddik [55]4 years ago
4 0
Add
2
y
2
y
to both sides of the equation then divide by
14
14
.
x
=
1
14
+
y
7




Move all terms that don't contain
x
x
to the right side and solve.
x
=
−
1
+
y
2
You might be interested in
Prove the following integration formula:
7nadin3 [17]

Answer:

See Explanation.

General Formulas and Concepts:

<u>Pre-Algebra</u>

  • Distributive Property
  • Equality Properties

<u>Algebra I</u>

  • Combining Like Terms
  • Factoring

<u>Calculus</u>

  • Derivative 1:                  \frac{d}{dx} [e^u]=u'e^u
  • Integration Constant C
  • Integral 1:                      \int {e^x} \, dx = e^x + C
  • Integral 2:                     \int {sin(x)} \, dx = -cos(x) + C
  • Integral 3:                     \int {cos(x)} \, dx = sin(x) + C
  • Integral Rule 1:             \int {cf(x)} \, dx = c \int {f(x)} \, dx
  • Integration by Parts:    \int {u} \, dv = uv - \int {v} \, du
  • [IBP] LIPET: Logs, Inverses, Polynomials, Exponents, Trig

Step-by-step Explanation:

<u>Step 1: Define Integral</u>

\int {e^{au}sin(bu)} \, du

<u>Step 2: Identify Variables Pt. 1</u>

<em>Using LIPET, we determine the variables for IBP.</em>

<em>Use Int Rules 2 + 3.</em>

u = e^{au}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ dv = sin(bu)du\\du = ae^{au}du \ \ \ \ \ \ \ \ \ v = \frac{-cos(bu)}{b}

<u>Step 3: Integrate Pt. 1</u>

  1. Integrate [IBP]:                                           \int {e^{au}sin(bu)} \, du = \frac{-e^{au}cos(bu)}{b} - \int ({ae^{au} \cdot \frac{-cos(bu)}{b} }) \, du
  2. Integrate [Int Rule 1]:                                                \int {e^{au}sin(bu)} \, du = \frac{-e^{au}cos(bu)}{b} + \frac{a}{b} \int ({e^{au}cos(bu)}) \, du

<u>Step 4: Identify Variables Pt. 2</u>

<em>Using LIPET, we determine the variables for the 2nd IBP.</em>

<em>Use Int Rules 2 + 3.</em>

u = e^{au}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ dv = cos(bu)du\\du = ae^{au}du \ \ \ \ \ \ \ \ \ v = \frac{sin(bu)}{b}

<u>Step 5: Integrate Pt. 2</u>

  1. Integrate [IBP]:                                                  \int {e^{au}cos(bu)} \, du = \frac{e^{au}sin(bu)}{b} - \int ({ae^{au} \cdot \frac{sin(bu)}{b} }) \, du
  2. Integrate [Int Rule 1]:                                    \int {e^{au}cos(bu)} \, du = \frac{e^{au}sin(bu)}{b} - \frac{a}{b} \int ({e^{au} sin(bu)}) \, du

<u>Step 6: Integrate Pt. 3</u>

  1. Integrate [Alg - Back substitute]:     \int {e^{au}sin(bu)} \, du = \frac{-e^{au}cos(bu)}{b} + \frac{a}{b} [\frac{e^{au}sin(bu)}{b} - \frac{a}{b} \int ({e^{au} sin(bu)}) \, du]
  2. [Integral - Alg] Distribute Brackets:          \int {e^{au}sin(bu)} \, du = \frac{-e^{au}cos(bu)}{b} + \frac{ae^{au}sin(bu)}{b^2} - \frac{a^2}{b^2} \int ({e^{au} sin(bu)}) \, du
  3. [Integral - Alg] Isolate Original Terms:     \int {e^{au}sin(bu)} \, du + \frac{a^2}{b^2} \int ({e^{au} sin(bu)}) \, du= \frac{-e^{au}cos(bu)}{b} + \frac{ae^{au}sin(bu)}{b^2}
  4. [Integral - Alg] Rewrite:                                (\frac{a^2}{b^2} +1)\int {e^{au}sin(bu)} \, du = \frac{-e^{au}cos(bu)}{b} + \frac{ae^{au}sin(bu)}{b^2}
  5. [Integral - Alg] Isolate Original:                                    \int {e^{au}sin(bu)} \, du = \frac{\frac{-e^{au}cos(bu)}{b} + \frac{ae^{au}sin(bu)}{b^2}}{\frac{a^2}{b^2} +1}
  6. [Integral - Alg] Rewrite Fraction:                          \int {e^{au}sin(bu)} \, du = \frac{\frac{-be^{au}cos(bu)}{b^2} + \frac{ae^{au}sin(bu)}{b^2}}{\frac{a^2}{b^2} +\frac{b^2}{b^2} }
  7. [Integral - Alg] Combine Like Terms:                          \int {e^{au}sin(bu)} \, du = \frac{\frac{ae^{au}sin(bu)-be^{au}cos(bu)}{b^2} }{\frac{a^2+b^2}{b^2} }
  8. [Integral - Alg] Divide:                                  \int {e^{au}sin(bu)} \, du = \frac{ae^{au}sin(bu) - be^{au}cos(bu)}{b^2} \cdot \frac{b^2}{a^2 + b^2}
  9. [Integral - Alg] Multiply:                               \int {e^{au}sin(bu)} \, du = \frac{1}{a^2+b^2} [ae^{au}sin(bu) - be^{au}cos(bu)]
  10. [Integral - Alg] Factor:                                 \int {e^{au}sin(bu)} \, du = \frac{e^{au}}{a^2+b^2} [asin(bu) - bcos(bu)]
  11. [Integral] Integration Constant:                     \int {e^{au}sin(bu)} \, du = \frac{e^{au}}{a^2+b^2} [asin(bu) - bcos(bu)] + C

And we have proved the integration formula!

6 0
3 years ago
Read 2 more answers
Question: Let R be the circle centered at (0,0) with radius 10. The lines x=6 and y=5 divide R into four regions R1, R2, R3 , an
Slav-nsk [51]

Answer:

120

Step-by-step explanation:

i used geogebra :)

7 0
4 years ago
Htuhrjnkemldjrhftrfejdkws
kondaur [170]

Answer:

2z + 4 = 8

Z = 2

Step-by-step explanation:

2z + 4 = 8

-4. -4

2z = 8

—- —

2. 2

z. =. 4

Easy Peasy! Hope this helped :) have great day!!

3 0
2 years ago
Which expressions have a value between 5 and 6?
mr Goodwill [35]

Answer:

24, pie + 2

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
(x+16)°<br> (4x-5)°<br> Find the measure of the angle.<br> I
o-na [289]

4x - 5 = x + 16

Subtract the sides of the equation plus 5

4x = x + 16 + 5

4x = x + 21

Subtract the sides of the equation minus x

3x = 21

Divided the sides of the equation by 3

\frac{3}{3} x =  \frac{21}{3} \\

x = 7

So the measure of the angle equals :

4(7) - 5 = 28 - 5 = 23

_________________________________

And we're done.

Thanks for watching buddy good luck.

♥️♥️♥️♥️♥️

6 0
3 years ago
Other questions:
  • Suppose the function ƒ(t) = et describes the growth of a colony of bacteria, where t is hours. Find the number of bacteria prese
    14·1 answer
  • 1. Your bank account has -$15 in it. You deposit $5 per day. (a) How much money is in your account after 5 days? Show your work.
    5·2 answers
  • Geometry math question please help
    11·1 answer
  • Use the graph of the line to answer the questions.
    15·2 answers
  • 80+ Points...
    6·2 answers
  • What is a rational number.
    5·2 answers
  • Help please !!!!!!!!!!
    8·1 answer
  • T= u+v/2 for u<br><br> •u= 2t+v<br> •u= 2t/v<br> •u= 2(t-v)<br> •u= 2t-v
    5·2 answers
  • In ΔCAB, point E is the midpoint of segment AC and point D is the midpoint of segment BC. If the measure of segment AB is 8 unit
    6·2 answers
  • You have fit a regression model with two regressors to a data set that has 20 observations. The total sum of squares is 1000 and
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!