1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Svet_ta [14]
3 years ago
12

HELP NOW!!! 20 POINTS AND URGENTLY NEEDED!!!!!!!!!!!!!!

Mathematics
1 answer:
Lunna [17]3 years ago
4 0

So basically here is the answer mate!

2x  +  7y  =  3-------------------------(substitute x's value here, i.e., x = -4y)

2( -4y )  +  7y  =  3

-8y  +  7y  =  3

-1y  =  3

y  =  -3------------------------(  1  )

Since x  =  -4y

             =  -4 (  -3  )  --------------------------( since we found the value of y)

             =  12

Here is the answer for  x  = 12  ,  y  =  -3

Mark my anwer as the brainliest please !  :)

You might be interested in
Can somebody PLEASE HELP ME
svet-max [94.6K]

Answer:

150.796π square meters

maybe!

Step-by-step explanation:

4 0
3 years ago
A) Compute the sum
avanturin [10]
A)

To calculate this sum, we could use trigonometric identity:

\arcsin(x)-\arcsin(y)=\arcsin\left(x\sqrt{1-y^2}-y\sqrt{1-x^2}\right)

We have:

\sum\limits_{k=1}^n\arcsin\left[\dfrac{\sqrt{k^2+2k}-\sqrt{k^2-1}}{k(k+1)}\right]=\\\\\\=
\sum\limits_{k=1}^n\arcsin\left[\dfrac{\sqrt{k^2+2k}}{k(k+1)}-\dfrac{\sqrt{k^2-1}}{k(k+1)}\right]=\\\\\\=
\sum\limits_{k=1}^n\arcsin\left[\dfrac{\sqrt{k^2+2k+1-1}}{k(k+1)}-\dfrac{\sqrt{k^2-1}}{k(k+1)}\right]=\\\\\\=
\sum\limits_{k=1}^n\arcsin\left[\dfrac{\sqrt{(k+1)^2-1}}{k(k+1)}-\dfrac{\sqrt{k^2-1}}{k(k+1)}\right]=\\\\\\


=\sum\limits_{k=1}^n\arcsin\left[\dfrac{1}{k}\cdot\dfrac{\sqrt{(k+1)^2-1}}{\sqrt{(k+1)^2}}-\dfrac{1}{k+1}\cdot\dfrac{\sqrt{k^2-1}}{\sqrt{k^2}}\right]=\\\\\\=
\sum\limits_{k=1}^n\arcsin\left[\dfrac{1}{k}\cdot\sqrt{\dfrac{(k+1)&^2-1}{(k+1)^2}}-\dfrac{1}{k+1}\cdot\sqrt{\dfrac{k^2-1}{k^2}}\right]=\\\\\\=
\sum\limits_{k=1}^n\arcsin\left[\dfrac{1}{k}\cdot\sqrt{1-\dfrac{1}{(k+1)^2}}-\dfrac{1}{k+1}\cdot\sqrt{1-\dfrac{1}{k^2}}\right]=\\\\\\


=\sum\limits_{k=1}^n\arcsin\left[\dfrac{1}{k}\cdot\sqrt{1-\left(\dfrac{1}{k+1}\right)^2}-\dfrac{1}{k+1}\cdot\sqrt{1-\left(\dfrac{1}{k}\right)^2}\right]=\\\\\\=
\sum\limits_{k=1}^n\left[\arcsin\left(\dfrac{1}{k}\right)-\arcsin\left(\dfrac{1}{k+1}\right)\right]=\\\\\\

=\bigg[\arcsin(1)-\arcsin\left(\frac{1}{2}\right)\bigg]+\bigg[\arcsin\left(\frac{1}{2}\right)-\arcsin\left(\frac{1}{3}\right)\bigg]+\\\\\\+
\bigg[\arcsin\left(\frac{1}{3}\right)-\arcsin\left(\frac{1}{4}\right)\bigg]+\dots+
\bigg[\arcsin\left(\frac{1}{n}\right)-\arcsin\left(\frac{1}{n+1}\right)\bigg]=\\\\\\

=\arcsin(1)-\arcsin\left(\frac{1}{2}\right)+\arcsin\left(\frac{1}{2}\right)-\arcsin\left(\frac{1}{3}\right)+\arcsin\left(\frac{1}{3}\right)-\\\\\\-\arcsin\left(\frac{1}{4}\right)+\dots+\arcsin\left(\frac{1}{n}\right)-\arcsin\left(\frac{1}{n+1}\right)=\\\\\\=
\arcsin(1)-\arcsin\left(\frac{1}{n+1}\right)=\dfrac{\pi}{2}-\arcsin\left(\frac{1}{n+1}\right)

So the answer is:

\sum\limits_{k=1}^n\arcsin\left[\dfrac{\sqrt{k^2+2k}-\sqrt{k^2-1}}{k(k+1)}\right]=\dfrac{\pi}{2}-\arcsin\left(\dfrac{1}{n+1}\right)}

B)

\sum\limits_{k=1}^\infty\arcsin\left[\dfrac{\sqrt{k^2+2k}-\sqrt{k^2-1}}{k(k+1)}\right]=\\\\\\=
\lim\limits_{n\to\infty}\sum\limits_{k=1}^n\arcsin\left[\dfrac{\sqrt{k^2+2k}-\sqrt{k^2-1}}{k(k+1)}\right]=\\\\\\=
\lim\limits_{n\to\infty}\Bigg(\dfrac{\pi}{2}-\arcsin\left(\dfrac{1}{n+1}\right)\Bigg)=\dfrac{\pi}{2}-\lim\limits_{n\to\infty}\arcsin\left(\dfrac{1}{n+1}\right)=\\\\\\=
\Bigg\{\dfrac{1}{n+1}\xrightarrow{n\to\infty}0\Bigg\}=\dfrac{\pi}{2}-\arcsin(0)=\dfrac{\pi}{2}-0=\dfrac{\pi}{2}

So we prove that:

\sum\limits_{k=1}^\infty\arcsin\left[\dfrac{\sqrt{k^2+2k}-\sqrt{k^2-1}}{k(k+1)}\right]=\dfrac{\pi}{2}
7 0
3 years ago
Hii help me pls this math test is so hard
DanielleElmas [232]
The last 2 options I belive
8 0
3 years ago
Kelvin finds a tile shaped like a triangle. He measures its angles to discover that it has two acute angles and one right angle.
Aleonysh [2.5K]

Answer:

right triangle

Step-by-step explanation:

A Right triangle is a triangle that has one of its angle as 90°.

Since the triangular shaped tiles has a right angle, the kind of triangle Kevin found will be a right triangle.

A right triangle has two acute angles (angles less than 90°) and a right angle

6 0
3 years ago
Find the product of 4 x 4 and enter it in the space
Elena-2011 [213]

Answer:

16

Step-by-step explanation:

Ⓗⓘ ⓣⓗⓔⓡⓔ

Well, 4*4 is equal to 4+4+4+4 which is also 16.

(っ◔◡◔)っ ♥ Hope this helped! Have a great day! :) ♥

Please, please give brainliest, it would be greatly appreciated, I only need one more before I advance, thanks!

4 0
3 years ago
Other questions:
  • Sophia is saving money for a new bicycle. The bicycle will cost at least $623. Sophia makes $8.22 per hour.
    9·2 answers
  • What is the radius of a cylinder if it has a volume of 769.3 cubic meters and a height of 5 meters? (Use 3.14 for π.)
    13·2 answers
  • What is the solution 1/x= x+3/2x^2
    9·1 answer
  • Which graph represents − 12 x − 6 y ≥ 5
    7·2 answers
  • The cost c per person to participate in a guided camping tour depends on the number of n participating in the tour. This relatio
    11·1 answer
  • Anthony is going to invest in an account paying an interest rate of 2.7% compounded quarterly. How much would Anthony need to in
    13·2 answers
  • An amusement park has discovered that the brace that provides stability to the ferris
    14·1 answer
  • Does a=7 make 7a= 56? <br> btw I hate math I am bad at it but I am good with other stuff
    11·2 answers
  • Write an equation in​ point-slope form of the line that passes through the given point and with the given slope m.
    11·1 answer
  • Hat is the gradient of the line parallel to the line 4y+6x=8?
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!