Answer:
(a) The value of P (X > 10) is 0.3679.
(b) The value of P (X > 20) is 0.1353.
(c) The value of P (X < 30) is 0.9502.
(d) The value of x is 30.
Step-by-step explanation:
The probability density function of an exponential distribution is:
![f(x)=\lambda e^{-\lambda x};\ x>0, \lambda>0](https://tex.z-dn.net/?f=f%28x%29%3D%5Clambda%20e%5E%7B-%5Clambda%20x%7D%3B%5C%20x%3E0%2C%20%5Clambda%3E0)
The value of E (X) is 10.
The parameter λ is:
![\lambda=\frac{1}{E(X)}=\frac{1}{10}=0.10](https://tex.z-dn.net/?f=%5Clambda%3D%5Cfrac%7B1%7D%7BE%28X%29%7D%3D%5Cfrac%7B1%7D%7B10%7D%3D0.10)
(a)
Compute the value of P (X > 10) as follows:
![P(X>10)=\int\limits^{\infty}_{10} {0.10 e^{-0.10 x}} \, dx \\=0.10\int\limits^{\infty}_{10} { e^{-0.10 x}} \, dx\\=0.10|\frac{e^{-0.10 x}}{-0.10} |^{\infty}_{10}\\=|e^{-0.10 x} |^{\infty}_{10}\\=e^{-0.10\times10}\\=0.3679](https://tex.z-dn.net/?f=P%28X%3E10%29%3D%5Cint%5Climits%5E%7B%5Cinfty%7D_%7B10%7D%20%7B0.10%20e%5E%7B-0.10%20x%7D%7D%20%5C%2C%20dx%20%5C%5C%3D0.10%5Cint%5Climits%5E%7B%5Cinfty%7D_%7B10%7D%20%7B%20e%5E%7B-0.10%20x%7D%7D%20%5C%2C%20dx%5C%5C%3D0.10%7C%5Cfrac%7Be%5E%7B-0.10%20x%7D%7D%7B-0.10%7D%20%7C%5E%7B%5Cinfty%7D_%7B10%7D%5C%5C%3D%7Ce%5E%7B-0.10%20x%7D%20%7C%5E%7B%5Cinfty%7D_%7B10%7D%5C%5C%3De%5E%7B-0.10%5Ctimes10%7D%5C%5C%3D0.3679)
Thus, the value of P (X > 10) is 0.3679.
(b)
Compute the value of P (X > 20) as follows:
![P(X>20)=\int\limits^{\infty}_{20} {0.10 e^{-0.10 x}} \, dx \\=0.10\int\limits^{\infty}_{20} { e^{-0.10 x}} \, dx\\=0.10|\frac{e^{-0.10 x}}{-0.10} |^{\infty}_{20}\\=|e^{-0.10 x} |^{\infty}_{20}\\=e^{-0.10\times20}\\=0.1353](https://tex.z-dn.net/?f=P%28X%3E20%29%3D%5Cint%5Climits%5E%7B%5Cinfty%7D_%7B20%7D%20%7B0.10%20e%5E%7B-0.10%20x%7D%7D%20%5C%2C%20dx%20%5C%5C%3D0.10%5Cint%5Climits%5E%7B%5Cinfty%7D_%7B20%7D%20%7B%20e%5E%7B-0.10%20x%7D%7D%20%5C%2C%20dx%5C%5C%3D0.10%7C%5Cfrac%7Be%5E%7B-0.10%20x%7D%7D%7B-0.10%7D%20%7C%5E%7B%5Cinfty%7D_%7B20%7D%5C%5C%3D%7Ce%5E%7B-0.10%20x%7D%20%7C%5E%7B%5Cinfty%7D_%7B20%7D%5C%5C%3De%5E%7B-0.10%5Ctimes20%7D%5C%5C%3D0.1353)
Thus, the value of P (X > 20) is 0.1353.
(c)
Compute the value of P (X < 30) as follows:
![P(X](https://tex.z-dn.net/?f=P%28X%3C30%29%3D%5Cint%5Climits%5E%7B30%7D_%7B0%7D%20%7B0.10%20e%5E%7B-0.10%20x%7D%7D%20%5C%2C%20dx%20%5C%5C%3D0.10%5Cint%5Climits%5E%7B30%7D_%7B0%7D%20%7B%20e%5E%7B-0.10%20x%7D%7D%20%5C%2C%20dx%5C%5C%3D0.10%7C%5Cfrac%7Be%5E%7B-0.10%20x%7D%7D%7B-0.10%7D%20%7C%5E%7B30%7D_%7B0%7D%5C%5C%3D%7Ce%5E%7B-0.10%20x%7D%20%7C%5E%7B30%7D_%7B0%7D%5C%5C%3D1-e%5E%7B-0.10%5Ctimes30%7D%5C%5C%3D1-0.0498%5C%5C%3D0.9502)
Thus, the value of P (X < 30) is 0.9502.
(d)
It is given that, P (X < x) = 0.95.
Compute the value of <em>x</em> as follows:
![P(X](https://tex.z-dn.net/?f=P%28X%3Cx%29%3D0.95%5C%5C%5Cint%5Climits%5E%7Bx%7D_%7B0%7D%20%7B0.10%20e%5E%7B-0.10%20x%7D%7D%20%5C%2C%20dx%3D0.95%5C%5C0.10%5Cint%5Climits%5E%7Bx%7D_%7B0%7D%20%7B%20e%5E%7B-0.10%20x%7D%7D%20%5C%2C%20dx%3D0.95%5C%5C0.10%7C%5Cfrac%7Be%5E%7B-0.10%20x%7D%7D%7B-0.10%7D%20%7C%5E%7Bx%7D_%7B0%7D%3D0.95%5C%5C%7Ce%5E%7B-0.10%20x%7D%20%7C%5E%7Bx%7D_%7B0%7D%3D0.95%5C%5C1-e%5E%7B-0.10%5Ctimes%20x%7D%3D0.95%5C%5Ce%5E%7B-0.10%5Ctimes%20x%7D%3D0.05)
Take natural log on both sides.
![ln(e^{-0.10x})=ln(0.05)\\-0.10x=-2.996\\x=\frac{2.996}{0.10}\\ =29.96\\\approx30](https://tex.z-dn.net/?f=ln%28e%5E%7B-0.10x%7D%29%3Dln%280.05%29%5C%5C-0.10x%3D-2.996%5C%5Cx%3D%5Cfrac%7B2.996%7D%7B0.10%7D%5C%5C%20%3D29.96%5C%5C%5Capprox30)
Thus, the value of x is 30.