The paraboloid meets the x-y plane when x²+y²=9. A circle of radius 3, centre origin.
<span>Use cylindrical coordinates (r,θ,z) so paraboloid becomes z = 9−r² and f = 5r²z. </span>
<span>If F is the mean of f over the region R then F ∫ (R)dV = ∫ (R)fdV </span>
<span>∫ (R)dV = ∫∫∫ [θ=0,2π, r=0,3, z=0,9−r²] rdrdθdz </span>
<span>= ∫∫ [θ=0,2π, r=0,3] r(9−r²)drdθ = ∫ [θ=0,2π] { (9/2)3² − (1/4)3⁴} dθ = 81π/2 </span>
<span>∫ (R)fdV = ∫∫∫ [θ=0,2π, r=0,3, z=0,9−r²] 5r²z.rdrdθdz </span>
<span>= 5∫∫ [θ=0,2π, r=0,3] ½r³{ (9−r²)² − 0 } drdθ </span>
<span>= (5/2)∫∫ [θ=0,2π, r=0,3] { 81r³ − 18r⁵ + r⁷} drdθ </span>
<span>= (5/2)∫ [θ=0,2π] { (81/4)3⁴− (3)3⁶+ (1/8)3⁸} dθ = 10935π/8 </span>
<span>∴ F = 10935π/8 ÷ 81π/2 = 135/4</span>
The measures of spread include the range, quartiles and the interquartile range, variance and standard deviation. Let's consider each one by one.
<u>Interquartile Range: </u>
Given the Data -> First Quartile = 2, Third Quartile = 5
Interquartile Range = 5 - 2 = 3
<u>Range:</u> 8 - 1 = 7
<u>Variance: </u>
We start by determining the mean,

n = number of numbers in the set
Solving for the sum of squares is a long process, so I will skip over that portion and go right into solving for the variance.

5.3
<u>Standard Deviation</u>
We take the square root of the variance,

2.3
If you are not familiar with variance and standard deviation, just leave it.
I hope this helps you
7×9×10.3
72×10.3
741.6
Answer:
B-$100=$372
The is is the smartest way I could look at this
OR
$372 - $100= b
Hope this helps
MARNIE OUT!
<u>m= -19/1</u>
We need to use the slope equation

We are working with the points,
(17, 2) and (18, -17)
x1 y1 x2 y2

<u>m= -19/1</u>