Answer:
isn't an equivalence relation. It is reflexive but neither symmetric nor transitive.
Step-by-step explanation:
Let
denote a set of elements.
would denote the set of all ordered pairs of elements of
.
For example, with
,
and
are both members of
. However,
because the pairs are ordered.
A relation
on
is a subset of
. For any two elements
,
if and only if the ordered pair
is in
.
A relation
on set
is an equivalence relation if it satisfies the following:
- Reflexivity: for any
, the relation
needs to ensure that
(that is:
.)
- Symmetry: for any
,
if and only if
. In other words, either both
and
are in
, or neither is in
.
- Transitivity: for any
, if
and
, then
. In other words, if
and
are both in
, then
also needs to be in
.
The relation
(on
) in this question is indeed reflexive.
,
, and
(one pair for each element of
) are all elements of
.
isn't symmetric.
but
(the pairs in
are all ordered.) In other words,
isn't equivalent to
under
even though
.
Neither is
transitive.
and
. However,
. In other words, under relation
,
and
does not imply
.
Answer:
B=![\left[\begin{array}{ccc}0&0\\0&1\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%260%5C%5C0%261%5C%5C%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
Let's do the multiplication AB.
If A=![\left[\begin{array}{ccc}1&0\\0&0\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%260%5C%5C0%260%5C%5C%5Cend%7Barray%7D%5Cright%5D)
then the first row of A is= (1 0) by the first column of B= (0 0) is equal to zero.
the first row of A is= (1 0) by the second column of B= (0 1) is equal to zero too because 1.0+0.1=0.
the second row of A is= (0 0) by any colum of B is equal to zero too.
So we have found an example that works!
If I remember right the answer is c
The answer would be...
1/3n + 3/4n = n + 1
^^^That would be the last option
Hope this helped!
~Just a girl in love with Shawn Mendes