Answer:
The expected value of X is
and the variance of X is 
The expected value of Y is
and the variance of Y is 
Step-by-step explanation:
(a) Let X be a discrete random variable with set of possible values D and probability mass function p(x). The expected value, denoted by E(X) or
, is

The probability mass function
of X is given by

Since the bus driver is equally likely to drive any of the 4 buses, the probability mass function
of Y is given by

The expected value of X is
![E(X)=\sum_{x\in [28,32,42,44]} x\cdot p_{X}(x)](https://tex.z-dn.net/?f=E%28X%29%3D%5Csum_%7Bx%5Cin%20%5B28%2C32%2C42%2C44%5D%7D%20x%5Ccdot%20p_%7BX%7D%28x%29)

The expected value of Y is
![E(Y)=\sum_{x\in [28,32,42,44]} x\cdot p_{Y}(x)](https://tex.z-dn.net/?f=E%28Y%29%3D%5Csum_%7Bx%5Cin%20%5B28%2C32%2C42%2C44%5D%7D%20x%5Ccdot%20p_%7BY%7D%28x%29)

(b) Let X have probability mass function p(x) and expected value E(X). Then the variance of X, denoted by V(X), is
![V(X)=\sum_{x\in D} (x-\mu)^2\cdot p(x)=E(X^2)-[E(X)]^2](https://tex.z-dn.net/?f=V%28X%29%3D%5Csum_%7Bx%5Cin%20D%7D%20%28x-%5Cmu%29%5E2%5Ccdot%20p%28x%29%3DE%28X%5E2%29-%5BE%28X%29%5D%5E2)
The variance of X is
![E(X^2)=\sum_{x\in [28,32,42,44]} x^2\cdot p_{X}(x)](https://tex.z-dn.net/?f=E%28X%5E2%29%3D%5Csum_%7Bx%5Cin%20%5B28%2C32%2C42%2C44%5D%7D%20x%5E2%5Ccdot%20p_%7BX%7D%28x%29)


The variance of Y is
![E(Y^2)=\sum_{x\in [28,32,42,44]} x^2\cdot p_{Y}(x)](https://tex.z-dn.net/?f=E%28Y%5E2%29%3D%5Csum_%7Bx%5Cin%20%5B28%2C32%2C42%2C44%5D%7D%20x%5E2%5Ccdot%20p_%7BY%7D%28x%29)


Answer:
74
Step-by-step explanation:
60,000 + 14,000
ANS 14%
ANSWER: 74
Answer:
x=1, x=8
Step-by-step explanation:
4x2−36x+32=0
Step 1: Factor left side of equation.
4(x−1)(x−8)=0
Step 2: Set factors equal to 0.
x−1=0 or x−8=0
(+1) (+8)
x=1 or x=8
Answer:
It's a positive 8.
Step-by-step explanation:
You can't have a negative amount of money.
Step-by-step explanation:
We know that tan=sin/cos, so tan(x+π/2)=

Then, we know that sin(u+v)=sin(u)cos(v)+cos(u)sin(v),
so our equation is then
Then, cos(u+v)=cos(u)cos(v)-sin(u)sin(v), so our expression is then
