Answer:
Hi there!
I might be able to help you!
It is NOT a function.
<u>Determining whether a relation is a function on a graph is relatively easy by using the vertical line test. If a vertical line crosses the relation on the graph only once in all locations, the relation is a function. However, if a vertical line crosses the relation more than once, the relation is not a function</u>. <u>X = y2 would be a sideways parabola and therefore not a function.</u> Good test for function: Vertical Line test. If a vertical line passes through two points on the graph of a relation, it is <em>not </em>a function. A relation which is not a function. The x-intercept of a function is calculated by substituting the value of f(x) as zero. Similarly, the y-intercept of a function is calculated by substituting the value of x as zero. The slope of a linear function is calculated by rearranging the equation to its general form, f(x) = mx + c; where m is the slope.
A relation that is not a function
As we can see duplication in X-values with different y-values, then this relation is not a function.
A relation that is a function
As every value of X is different and is associated with only one value of y, this relation is a function.
Step-by-step explanation:
It's up there!
God bless you!
30 because 5x6= 30. All you have to do if the fractions are already simplified, is multiply the denominators together.
The first expression is equivalent to B
The second expression is equivalent to A
The third expression is equivalent to C
You are basically adding like terms. For example for the first expression, it is 7x^2 + 2x^2, which equals 9x^2. Remember since you're adding, do not add the exponents.
Answer:
A. Cylinder + cone
<u>Volume is the sum of volumes:</u>
- V = Vcon + Vcyl = 1/3πr²h₁ + πr²h₂
- V = 1/3π*9²*12 + π*9²*120 = 31554.2 cm³
<u>Surface area of cone:</u>
- A = A=πr(r+√(h₁²+r²)) = π*9(9 + √(9²+12²)) = 678.6 cm²
<u>Surface area of cylinder minus bases:</u>
- A = 2πrh₂ = 2π*9*120 = 6785.8 cm²
<u>Total surface area:</u>
- 678.6 + 6785.8 = 7464.4 cm²
-------------------------------------------------
B. Cube+ pyramid
<u>Volume:</u>
- V = a³ + (1/3)a²h = a³ + (1/3)a²√(l²-(a/2)²)
- V = 8³ + (1/3)8²√(10²-4²) = 707.5 cm³
<u>Surface area of pyramid:</u>
- A = a² + 2al = 8² + 2*8*10 = 224 cm²
<u>Surface area of cube minus bases:</u>
- A = 4a² = 4(8²) = 256 cm²
<u>Total surface area:</u>
Answer:
theres no picture I cant answer
Step-by-step explanation:
Please answer the last question on my profile too for 23 points