Answer:

Explanation:
In a beta (minus) decay, a neutron in a nucleus turns into a proton, emitting a fast-moving electron (called beta particle) alongside with an antineutrino.
The general equation for a beta decay is:
(1)
where
X is the original nucleus
Y is the daughter nucleus
e is the electron
is the antineutrino
We observe that:
- The mass number (A), which is the sum of protons and neutrons in the nucleus, remains the same in the decay
- The atomic number (Z), which is the number of protons in the nucleus, increases by 1 unit
In this problem, the original nucles that we are considering is iodine-131, which is

where
Z = 53 (atomic number of iodine)
A = 131 (mass number)
Using the rule for the general equation (1), the dauther nucleus must have same mass number (131) and atomic number increased by 1 (54, which corresponds to Xenon, Xe), therefore the equation will be:

Answer:
Stars produce energy through nuclear fusion.
Stars are massive objects composed of gas.
Stars are composed primarily of hydrogen and helium.
Explanation:
Stars are massive objects that have a large gravitational field, which drives the star to contract on itself, which is why fusion occurs: in the center of the star the nuclei of atoms are already so close due to gravity and high temperatures that bind. This is what is called nuclear fusion and is the energy source of a star.
On the other hand yes, the main elements of a star are hydrogen and helium (two hydrogen nuclei fuse to make helium), this makes the star mainly a huge ball of gas so there is no solid surface where you can stand on.
And about water on a star, that is not possible. Temperatures on stars are very very high that water could not exist in a liquid form on them.
Answer:Electromagnetic spectrum
Explanation:
Mass and energy are equivalent. I'm doing the same test right now.