Answer:
Vy = V0 sin 38 where Vy is the initial vertical velocity
The ball will accelerate downwards (until it lands)
Note the signs involved if Vy is positive then g must be negative
The acceleration is constant until the ball lands
t (upwards) = (0 - Vy) / -g = Vy / g final velocity = 0
t(downwards = (-Vy - 0) / -g = Vy / g final velocity = -Vy
time upwards = time downwards (conservation laws)
Answer:
angular acceleration is -0.2063 rad/s²
Explanation:
Given data
mass m = 95.2 kg
radius r = 0.399 m
turning ω = 93 rpm
radial force N = 19.6 N
kinetic coefficient of friction μ = 0.2
to find out
angular acceleration
solution
we know frictional force that is = radial force × kinetic coefficient of friction
frictional force = 19.6 × 0.2
frictional force = 3.92 N
and
we know moment of inertia that is
γ = I ×α = frictional force × r
so
γ = 1/2 mr²α
α = -2f /mr
α = -2(3.92) /95.2 (0.399)
α = - 7.84 / 37.9848 = -0.2063
so angular acceleration is -0.2063 rad/s²
Answer:
1) p₀ = 0.219 kg m / s, p = 0, 2) Δp = -0.219 kg m / s, 3) 100%
Explanation:
For the first part, which is speed just before the crash, we can use energy conservation
Initial. Highest point
Em₀ = U = mg y
Final. Low point just before the crash
Emf = K = ½ m v²
Em₀ = Emf
m g y = ½ m v²
v = √ 2 g y
Let's calculate
v = √ (2 9.8 0.05)
v = 0.99 m / s
1) the moment before the crash is
p₀ = m v
p₀ = 0.221 0.99
p₀ = 0.219 kg m / s
After the collision, the car's speed is zero, so its moment is zero.
p = 0
2) change of momentum
Δp = p - p₀
Δp = 0- 0.219
Δp = -0.219 kg m / s
3) the reason is
Δp / p = 1
In percentage form it is 100%
<span>Earthquakes often cause dramatic changes at Earth's surface. In addition to the ground movements, other surface effects include changes in the flow of groundwater, landslides, and mudflows. Earthquakes can do significant damage to buildings, bridges, pipelines, railways, embankments, dams, and other <span>structures</span></span>