Explanation:
Different atoms absorb and emit specific wavelengths of electromagnetic radiation and nothing in between. These absorption and emission spectra are actually used to identify atoms of elements in a substance. This phenomenon is explained by Bohr's theory of quantized energy levels in an atom – called orbital levels. When an electron 'jumps' from a lower to higher orbital level, it absorbs a specific wavelength of electromagnetic radiation specific to the ‘jump’. Vice versa, when an electron 'jumps' to a lower orbital level is emits an equivalent and specific wavelength of electromagnetic radiation.
Learn More:
For more on emission spectra check out;
brainly.com/question/12472637
brainly.com/question/8788867
#LearnWithBrainly
Temperature can change a reaction rate because adding or taking away heat means energy is being added or taken away. When energy is added, the particles speed up, so there is a greater chance of the reactants colliding to form the products, which increases the reaction rate. When energy is taken away, the particles more slower, so they don't collide as easily, which slows down the reaction rate.
Therefore, the answer is D.
Answer:
First one: group
Second one: period
Third one: number of valence electrons
Last one: increases
1) ₁₄Si 1s²2s²2p⁶3s²3p².
Principal quantum number (n=3) have four electrons (3s²3p²).
2) ₁₉K 1s²2s²2p⁶3s²3p⁶4s¹.
Azimuthal quantum number (l=o) have seven electrons (1s²2s²3s²4s¹).
3) ₈₀Hg [Xe] 4f¹⁴5d¹⁰6s².
Principal quantum number (n=4) have thirty-two electrons (4s²4p⁶4d¹⁰4f¹⁴).
The principal quantum number<span> is one of four </span>quantum numbers<span> which are assigned to each electron in an </span>atom<span> to describe that electron's state.</span>
The azimuthal quantum number<span> is a </span>quantum number<span> for an </span>atomic orbital<span> that determines its </span>orbital angular momentum<span> and describes the shape of the orbital. </span>