A second-order extension of the Kohn-Sham total energy in density-functional theory (DFT) with respect to charge density fluctuations serves as the foundation for the density functional based tight binding (DFTB) approach.
What is DFTB method?
- The density functional based tight binding (DFTB) electronic structure method was used to study the clusters of bare TiO2 and TiO2 with linked organic ligands modeling polyorganic composites used as photocatalytic materials.
- The results were compared to those obtained from B3LYP/6-31G(d,p) calculations, semiempirical methods PM6 and PM7, and available experimental data.
- It was discovered that the highly scalable DFTB approach produces outcomes that are nearly on the level of theory B3LYP/6-31G(d,p).
- The trans3d set more accurately reproduces the energies of the composite material production in polycondensation processes, but the corrected version of the tiorg DFTB parameter set (tiorg-smooth) performs better for structural parameter estimations.
- The tiorg-smooth and trans3d settings perform better than the matsci set in some way. Studies of adsorption complexes of bare TiO2 clusters can be conducted using the tiorg-smooth and matsci sets.
Learn more about the Density with the help of the given link:
brainly.com/question/23487480
#SPJ4
Answer: On heating, Magnesium forms its oxide; while potassium manganate(VII) decomposes
Explanation:
Magnesium Mg, on heating forms Magnesium oxide
2Mg(s) + O2(g) --> 2MgO
Potassium permanganate KMnO4, on heating decomposes to potassium manganate K2MnO4, manganese dioxide MnO2, and Oxygen gas O2.
2KMnO4 --> K2MnO4 + MnO2 + O2
The difference in observation is that, on heating, Magnesium forms its OXIDE as product; while potassium manganate(VII) decomposes, giving OFF most of its constituents and reducing its weight.
Gas molecules have more freedom in motion—and gases can be thought of as more “disordered”—than molecules of a solid, which are rigidly held in place. When it comes to phases, the entropy increases as you go from a solid to liquid to gas (the gaseous state having the greatest entropy and the solid state having the least).
So, as a sample of solid iodine sublimes to form gaseous iodine, the entropy of the sample increases.
Answer:
.085 M .
Explanation:
3A(g) +4B(g) ⇋ 5C(g)
4 moles of B reacts with A to form 5 moles of C
.068 moles of B will reacts with A to form 5 x .068 / 4 moles of C
Moles of C formed
= 5 x .068 / 4
= .085 moles .