<u>Answer:</u> The pH of resulting solution is 8.7
<u>Explanation:</u>
To calculate the number of moles for given molarity, we use the equation:

Molarity of TRIS acid solution = 0.1 M
Volume of solution = 50 mL
Putting values in above equation, we get:

Molarity of TRIS base solution = 0.2 M
Volume of solution = 60 mL
Putting values in above equation, we get:

Volume of solution = 50 + 60 = 110 mL = 0.11 L (Conversion factor: 1 L = 1000 mL)
- To calculate the pH of acidic buffer, we use the equation given by Henderson Hasselbalch:
![pH=pK_a+\log(\frac{[salt]}{[acid]})](https://tex.z-dn.net/?f=pH%3DpK_a%2B%5Clog%28%5Cfrac%7B%5Bsalt%5D%7D%7B%5Bacid%5D%7D%29)
![pH=pK_a+\log(\frac{[\text{TRIS base}]}{[\text{TRIS acid}]})](https://tex.z-dn.net/?f=pH%3DpK_a%2B%5Clog%28%5Cfrac%7B%5B%5Ctext%7BTRIS%20base%7D%5D%7D%7B%5B%5Ctext%7BTRIS%20acid%7D%5D%7D%29)
We are given:
= negative logarithm of acid dissociation constant of TRIS acid = 8.3
![[\text{TRIS acid}]=\frac{0.005}{0.11}](https://tex.z-dn.net/?f=%5B%5Ctext%7BTRIS%20acid%7D%5D%3D%5Cfrac%7B0.005%7D%7B0.11%7D)
![[\text{TRIS base}]=\frac{0.012}{0.11}](https://tex.z-dn.net/?f=%5B%5Ctext%7BTRIS%20base%7D%5D%3D%5Cfrac%7B0.012%7D%7B0.11%7D)
pH = ?
Putting values in above equation, we get:

Hence, the pH of resulting solution is 8.7
Yes..? I don’t understand what you’re trying to ask mate.
It would be endothermic because the log is in the system.
Explanation:
Balloon that an ocean diver takes to a pressure of 202 k Pa will get reduced in size that is the volume of the balloon will get reduced. This is because pressure and volume of the gas are inversely related to each other.
According to Boyle's law: The pressure of the gas is inversely proportional to the volume occupied by the gas at constant temperature(in Kelvins).
(At constant temperature)
The pressure beneath the sea is 202 kPa and the atmospheric pressure is 101.3 kPa . This increase in pressure will result in decrease in volume occupied by the gas inside the balloon with decrease in size of a balloon. Hence, the size of the balloon will get reduced at 202 kPa (under sea).
The Henderson-Hasselbalch approximation is for conjugate acid-base pairs in a buffered solution. We're going to call HA a weak acid, and A- its conjugate base. The equation is as follows:
pH = pKa + log([base]/[acid]), where the brackets imply concentrations
Plugging in our symbols and the pKa value, the equation becomes:
pH = 4.874 + log([A-]/[HA])