Answer:
(a)31.42 inches
(b)942.48 Square Inches
Step-by-step explanation:
Given a sector of a circle with the following dimensions:
Radius of the circle =60 inches
Central Angle of the sector =30°
(a)Arc Length
Arc Length 

(b)Area of the sector
Area of the sector 

Answer:
See explanation and hopefully it answers your question.
Basically because the expression has a hole at x=3.
Step-by-step explanation:
Let h(x)=( x^2-k ) / ( hx-15 )
This function, h, has a hole in the curve at hx-15=0 if it also makes the numerator 0 for the same x value.
Solving for x in that equation:
Adding 15 on both sides:
hx=15
Dividing both sides by h:
x=15/h
For it be a hole, you also must have the numerator is zero at x=15/h.
x^2-k=0 at x=15/h gives:
(15/h)^2-k=0
225/h^2-k=0
k=225/h^2
So if we wanted to evaluate the following limit:
Lim x->15/h ( x^2-k ) / ( hx-15 )
Or
Lim x->15/h ( x^2-(225/h^2) ) / ( hx-15 ) you couldn't use direct substitution because of the hole at x=15/h.
We were ask to evaluate
Lim x->3 ( x^2-k ) / ( hx-15 )
Comparing the two limits h=5 and k=225/h^2=225/25=9.
Using the <em>normal distribution and the central limit theorem</em>, it is found that there is a 0.1335 = 13.35% probability that 100 randomly selected students will have a mean SAT II Math score greater than 670.
<h3>Normal Probability Distribution</h3>
In a normal distribution with mean
and standard deviation
, the z-score of a measure X is given by:

- It measures how many standard deviations the measure is from the mean.
- After finding the z-score, we look at the z-score table and find the p-value associated with this z-score, which is the percentile of X.
- By the Central Limit Theorem, the sampling distribution of sample means of size n has standard deviation
.
In this problem:
- The mean is of 660, hence
.
- The standard deviation is of 90, hence
.
- A sample of 100 is taken, hence
.
The probability that 100 randomly selected students will have a mean SAT II Math score greater than 670 is <u>1 subtracted by the p-value of Z when X = 670</u>, hence:

By the Central Limit Theorem



has a p-value of 0.8665.
1 - 0.8665 = 0.1335.
0.1335 = 13.35% probability that 100 randomly selected students will have a mean SAT II Math score greater than 670.
To learn more about the <em>normal distribution and the central limit theorem</em>, you can take a look at brainly.com/question/24663213
each term is negative and 1/4 of previous term so the nth term is the n-1 term times -1/4 so f(n)= -1/4 f(n-1)