Answer:
The balanced chemical equation will be "
".
Explanation:
The given equation is:

<u>Step 1:</u>
<u></u>
...(equation 1)
<u>Step 2:</u>
<u></u>
...(equation 2)
On adding "equation 1" and "equation 2", we get
⇒ 
⇒ 
The second step:
⇒ 
Answer:
As solute concentration increases, vapor pressure decreases.
Step-by-step explanation:
As solute concentration increases, the number of solute particles at the surface of the solution increases, so the number of <em>solvent </em>particles at the surface <em>decreases</em>.
Since there are fewer solvent particles available to evaporate from the surface, the vapour pressure decreases.
C. and D. are <em>wrong</em>. The vapour pressure depends <em>only</em> on the number of particles. It does not depend on the nature of the particles.
Answer: The density of Ammonia is 0.648 g/l
Explanation:
Density = Mass/ Volume
Mass of one mole of Ammonia (NH3) = 17.031g
Volume =?
Using the ideal gas law we can determine the volume.
PV = nRT
P = 0.913 atm, V= ?, n = 1, R = 0.08206 L.atm/K, and T= 293K
Make V the subject of the formular, we then have;
V= nRT/ P = 1 mol x 0.08206 L.atm/ K.mol x 293 / 0.913 atm
V = 24.04358/ 0.913 = 26.3L
Having gotten the value of Volume in this question, we then go back to solve for density.
Density = Mass/ Volume
17.031g/ 26.3L = 0.64756 ≈ 0.648 g/l
Answer:
Products are AgBr and KNO3