F(x)=5*2
the f(x) stands for a normal X like any other algebraic equation. so all it is, is 5 times 2, which is 10.
so,
f(x)=5*2
f(x)=10<span />
        
             
        
        
        
Answer:
a) ![\mathrm{E}[\mathrm{T}]=\sum_{\mathrm{H}}^{5} \frac{200}{101-i}](https://tex.z-dn.net/?f=%5Cmathrm%7BE%7D%5B%5Cmathrm%7BT%7D%5D%3D%5Csum_%7B%5Cmathrm%7BH%7D%7D%5E%7B5%7D%20%5Cfrac%7B200%7D%7B101-i%7D)
b) ![\mathrm{Var}[\mathrm{T}]=\sum_{k=1}^{5} \frac{(200)^{2}}{(101-i)^{2}}](https://tex.z-dn.net/?f=%5Cmathrm%7BVar%7D%5B%5Cmathrm%7BT%7D%5D%3D%5Csum_%7Bk%3D1%7D%5E%7B5%7D%20%5Cfrac%7B%28200%29%5E%7B2%7D%7D%7B%28101-i%29%5E%7B2%7D%7D)
Step-by-step explanation:
Given:
The lifetimes of the individual items are independent exponential random variables.
Mean = 200 hours. 
Assume, Ti be the time between (  )st and the
 )st and the  failures. Then, the
 failures. Then, the  are independent with
 are independent with  being exponential with rate
 being exponential with rate  
 
Therefore,
a) ![E[T]=\sum_{i=1}^{5} E\left[\tau_{i}\right]](https://tex.z-dn.net/?f=E%5BT%5D%3D%5Csum_%7Bi%3D1%7D%5E%7B5%7D%20E%5Cleft%5B%5Ctau_%7Bi%7D%5Cright%5D)

![\therefore \mathrm{E}[\mathrm{T}]=\sum_{\mathrm{H}}^{5} \frac{200}{101-i}](https://tex.z-dn.net/?f=%5Ctherefore%20%5Cmathrm%7BE%7D%5B%5Cmathrm%7BT%7D%5D%3D%5Csum_%7B%5Cmathrm%7BH%7D%7D%5E%7B5%7D%20%5Cfrac%7B200%7D%7B101-i%7D)

The variance is given by, ![\mathrm{Var}[\mathrm{T}]=\sum_{i=1}^{5} \mathrm{Var}[T]](https://tex.z-dn.net/?f=%5Cmathrm%7BVar%7D%5B%5Cmathrm%7BT%7D%5D%3D%5Csum_%7Bi%3D1%7D%5E%7B5%7D%20%5Cmathrm%7BVar%7D%5BT%5D)
![\therefore \mathrm{Var}[\mathrm{T}]=\sum_{k=1}^{5} \frac{(200)^{2}}{(101-i)^{2}}](https://tex.z-dn.net/?f=%5Ctherefore%20%5Cmathrm%7BVar%7D%5B%5Cmathrm%7BT%7D%5D%3D%5Csum_%7Bk%3D1%7D%5E%7B5%7D%20%5Cfrac%7B%28200%29%5E%7B2%7D%7D%7B%28101-i%29%5E%7B2%7D%7D)
 
        
             
        
        
        
Answer:
Step-by-step explanation:
D
C (t)= 273 (0.02)t
 
        
             
        
        
        
31 
since A = 1/2 b h, and the A is 279 and the height is 18, we can plug them in and solve for b.