Answer:
c = 36
Step-by-step explanation:
Use the formula (b/2)^2 to solve for the max or min.
ax^2 + bx + c
b = 12
(12/2)^2
6^2 = 36
You can check you work
y = x^2 + 12x + 36
y = (x + 6) (x + 6) It works!
Answer:
q = -1
Step-by-step explanation:
Solve for q:
15 - 3 (q - 4) = -5 (q - 7) - 10
-3 (q - 4) = 12 - 3 q:
12 - 3 q + 15 = -5 (q - 7) - 10
Grouping like terms, -3 q + 12 + 15 = (12 + 15) - 3 q:
(12 + 15) - 3 q = -5 (q - 7) - 10
12 + 15 = 27:
27 - 3 q = -5 (q - 7) - 10
-5 (q - 7) = 35 - 5 q:
27 - 3 q = 35 - 5 q - 10
Grouping like terms, -5 q - 10 + 35 = (35 - 10) - 5 q:
27 - 3 q = (35 - 10) - 5 q
35 - 10 = 25:
27 - 3 q = 25 - 5 q
Add 5 q to both sides:
5 q - 3 q + 27 = (5 q - 5 q) + 25
5 q - 5 q = 0:
5 q - 3 q + 27 = 25
5 q - 3 q = 2 q:
2 q + 27 = 25
Subtract 27 from both sides:
2 q + (27 - 27) = 25 - 27
27 - 27 = 0:
2 q = 25 - 27
25 - 27 = -2:
2 q = -2
Divide both sides of 2 q = -2 by 2:
(2 q)/2 = (-2)/2
2/2 = 1:
q = (-2)/2
The gcd of -2 and 2 is 2, so (-2)/2 = (2 (-1))/(2×1) = 2/2×-1 = -1:
Answer: q = -1
52 ask me moreeeeeeeeeeeeeeeee
Answer:
x=-40
Step-by-step explanation: