I think it’s-10. Hope it’s right.
The answer is 50 y squared minus 4 x squared
- To divide the triangles into these regions, you should construct the <u>perpendicular bisector</u> of each segment.
- These perpendicular bisectors intersect and divide each triangle into three regions.
- The points in each region are those closest to the vertex in that <u>region</u>.
<h3>What is a triangle?</h3>
A triangle can be defined as a two-dimensional geometric shape that comprises three (3) sides, three (3) vertices and three (3) angles only.
<h3>What is a line segment?</h3>
A line segment can be defined as the part of a line in a geometric figure such as a triangle, circle, quadrilateral, etc., that is bounded by two (2) distinct points and it typically has a fixed length.
<h3>What is a
perpendicular bisector?</h3>
A perpendicular bisector can be defined as a type of line that bisects (divides) a line segment exactly into two (2) halves and forms an angle of 90 degrees at the point of intersection.
In this scenario, we can reasonably infer that to divide the triangles into these regions, you should construct the <u>perpendicular bisector</u> of each segment. These perpendicular bisectors intersect and divide each triangle into three regions. The points in each region are those closest to the vertex in that <u>region</u>.
Read more on perpendicular bisectors here: brainly.com/question/27948960
#SPJ1
Answer:
Q1) Answer: After 3 minutes there will be 4.8 gallons of water in the fish tank. Q2) Answer: 40 gallons of water will be filled after 25 minutes.
Answer: A is the correct option.Segment AD is 3 and segment AE is 2.
Step-by-step explanation:
Given : A triangle ABC where AC=4 and AB=6
then to prove segment DE is parallel to segment BC and half its length.
the length of AD and AE must divide AC and AB respectively to get the same ratio of 2:1
To apply converse of basic proportionality theorem.
If we take first option Segment AD is 3 and segment AE is 2 then

Therefore by converse of basic proportionality theorem
DE is parallel to segment BC and half its length.
Therefore A is correct option.