The expressions with radicals which are variables and numbers raised to a fractional indices are simplified as follows.
13. √(9·x) = 3·√x
14. √(4·y) = 2·√y
15. √(8·x²) = 2·x·√2
16. √(9·x²) = 3·x
17. √(3·x²) = x·√3
18. √(5·y²) = y·√5
19. √(13·x²) = x·√(13)
20. √(29·y²) = y·√(29)
21. √(64·y²) = 8·y
22. √(125·a²) = 5·a·√5
23. ∛(16) = 2·∛2
24. √(50·a²·b) = 5·a·√(2·b)
<h3>What are radicals expressions?</h3>
A radical expression is one that contains the radical (square root or nth root) sign, √.
13. √(9·x)
√(9·x) = √(3²·x) = 3·√x
14. √(4·y)
√(4·y) = √(2²·y) = 2·√y
15. √(8·x²)
√(8·x²) = √(4 × 2·x²) = √(2² × 2·x²)
√(2² × 2·x²) = √(2²·x² × 2) = 2·x·√2
16. √(9·x²)
√(9·x²) = √(3²·x²) = 3·x
17. √(3·x²)
18. √(5·y²)
√5 × √(y²) = √5 × y = y·√5
19. √(13·x²)
√(13·x²) = √(13) × √x² = √(13) × x = x·√(13)
20. √(29·y²)
√(29·y²) = √(29) × √(y²) = √(29) × y = y·√(29)
21. √(64·y²)
√(64·y²) = √(8²·y²) = √(8²) × √(y²) = 8 × y = 8·y
22. √(125·a²)
√(125·a²) = √(25 × 5 × a²) = √(25) × √5 × √(a²) = 5 × √5 × a
5 × √5 × a = 5·a·√5
23. ∛(16)
∛(16) = ∛(16) = ∛(8 × 2) = ∛(2³ × 2) = 2·∛2
24. √(50·a²·b)
√(50·a²·b) = √(25 × 2 × a² × b) = √(5² × 2 × a² × b) = √(5² × a² × 2 × b)
√((5² × a²) × 2 × b) = 5·a·√(2·b)
Learn more about simplifying expressions with radicals here:
brainly.com/question/13114751
#SPJ1
Answer:
9,18, and 36
Step-by-step explanation:
9*4=36 and 9*1=9
18*2=36 and 9*2=18
36*1=36 and 9*4=36
Answer: b
Step-by-step explanation:
you start with 0 min- equals 24
1 min- 21
2 min- 18
3 min- 15
4 min- 12
5 min- 9
and so on- you look for the table that best describes that. x represents the minutes, and y represent the amount of water left in the sink.
First one:
you can add -10m and -13m but you can't add -10m and 2m^4 becuase the powers aren't the same so
when adding the like terms
look at the:
powers, (x^3 adds with x^3)
placehloder letter (x adds with x and y adds with y and so on)
-10m+2m^4-13m-20m^4
powers: m^1 and M^4
placeholders: all m
add
-10m-13m+2m^4-20m^4
-23m-18m^4
second one:
when multiplying exponents, you add with like
so if you multipliy
x^2yz^3 times x^4y^2z^2 thne you would get x^6y^3z^5
when multiply with coeficients
2x^2yz^3 times 4x^4y^2z^2=8x^6y^3z^5
so using associative property a(bc)=(ab)c
2/3 times p^4 times y^3 times y^4 times s^5 times 6 times p^2 times s^3
group like terms
(2/3 times 6) times (p^4 times p^2) times (y^3 times y^4) times (s^5 times s^3)
(4) times (p^6) times (y^7) times (s^8)
4p^6y^7s^8