Answer: I think the answer would be 4+2n=60.. might be wrong though
Step-by-step explanation:
You can go through the effort of determining the zero of the function analytically and evaluating an analytic expression for the derivative at that point, or you can let a graphing calculator do that heavy lifting. Since the numbers have to be "nice" for your equation to have the desired form, it is easy to know what to round to in the event that is necessary (it isn't).
We find the positive zero-crossing at x=2, and the slope of the curve at that point to be 8. Thus the line will have slope -1/8 and can be written as
.. x +8y -2 = 0
89/100 as a precent is is 89% because if you change 89/100 to a decimal you get .89 and then you multiply that by 100 (or just move the decimal over 2 places to the right) and you will get 89% make since? and its the same way if your going from % to decimal except you divide by 100( or move the decimal over 2 places to the left) so to a percent is right and to a decimal is left. easy right?
Answer:
$3
Step-by-step explanation:
1. Let a and b be coefficients such that

Combining the fractions on the right gives



so that

2. a. The given ODE is separable as

Using the result of part (1), integrating both sides gives

Given that y = 1 when x = 1, we find

so the particular solution to the ODE is

We can solve this explicitly for y :


![\ln|y| = \ln\left|\sqrt[3]{\dfrac{5x}{2x+3}}\right|](https://tex.z-dn.net/?f=%5Cln%7Cy%7C%20%3D%20%5Cln%5Cleft%7C%5Csqrt%5B3%5D%7B%5Cdfrac%7B5x%7D%7B2x%2B3%7D%7D%5Cright%7C)
![\boxed{y = \sqrt[3]{\dfrac{5x}{2x+3}}}](https://tex.z-dn.net/?f=%5Cboxed%7By%20%3D%20%5Csqrt%5B3%5D%7B%5Cdfrac%7B5x%7D%7B2x%2B3%7D%7D%7D)
2. b. When x = 9, we get
![y = \sqrt[3]{\dfrac{45}{21}} = \sqrt[3]{\dfrac{15}7} \approx \boxed{1.29}](https://tex.z-dn.net/?f=y%20%3D%20%5Csqrt%5B3%5D%7B%5Cdfrac%7B45%7D%7B21%7D%7D%20%3D%20%5Csqrt%5B3%5D%7B%5Cdfrac%7B15%7D7%7D%20%5Capprox%20%5Cboxed%7B1.29%7D)