Answer:
The solution set of the quadratic function
is
.
Step-by-step explanation:
Let be a second-order polynomial (quadratic function) is standard form and equalized to zero:
![a\cdot x^{2}+b\cdot x + c = 0](https://tex.z-dn.net/?f=a%5Ccdot%20x%5E%7B2%7D%2Bb%5Ccdot%20x%20%2B%20c%20%3D%200)
Its roots can be determined by the Quadratic Formula in terms of its polynomial coefficients, which states that:
![x_{1,2} = \frac{-b\pm\sqrt{b^{2}-4\cdot a\cdot c}}{2\cdot a}](https://tex.z-dn.net/?f=x_%7B1%2C2%7D%20%3D%20%5Cfrac%7B-b%5Cpm%5Csqrt%7Bb%5E%7B2%7D-4%5Ccdot%20a%5Ccdot%20c%7D%7D%7B2%5Ccdot%20a%7D)
Given that
,
and
, the roots of the polynomial are, respectively:
![x_{1,2} = \frac{-6\pm \sqrt{6^{2}-4\cdot (1)\cdot (10)}}{2\cdot (1)}](https://tex.z-dn.net/?f=x_%7B1%2C2%7D%20%3D%20%5Cfrac%7B-6%5Cpm%20%5Csqrt%7B6%5E%7B2%7D-4%5Ccdot%20%281%29%5Ccdot%20%2810%29%7D%7D%7B2%5Ccdot%20%281%29%7D)
![x_{1,2} = -3\pm i](https://tex.z-dn.net/?f=x_%7B1%2C2%7D%20%3D%20-3%5Cpm%20i)
![x_{1} = -3+i](https://tex.z-dn.net/?f=x_%7B1%7D%20%3D%20-3%2Bi)
![x_{2} = -3 -i](https://tex.z-dn.net/?f=x_%7B2%7D%20%3D%20-3%20-i)
The solution set of the quadratic function
is
.
Https://www.omnicalculator.com/business/markup
Answer:
see below
Step-by-step explanation:
m/n = 1/7
Using cross products
7m = n
This is a direct proportion
Answer:
There is no expression to evaluate.
Step-by-step explanation:
The answer would be (2,3)