The answer is 18
I hope this helps
Answer:
y = -6
Step-by-step explanation:
y = mx + b
-6 = -5(0) + b
b = -6
Answer:

Explanation:

simplify the following

subtract 1 from both sides

simplify the following

multiply both sides by 1/3

simplify the following

Answer:
See below
Step-by-step explanation:
1.
-6(a + 8)
Distribute the -6.
-6a - 48
2.
4(1 + 9x)
Distribute the 4.
4 + 36x or 36x + 4
3.
6(-5n + 7)
Distribute the 6.
-30n + 42
4.
(9m + 10) * 2
Rewrite.
2(9m + 10)
Distribute the 2.
18m + 20
5.
(-4 - 3n) * -8
Rewrite.
-8(-4 - 3n)
Distribute the -8.
32 + 24n or 24n + 32
6.
8(-b - 4)
Distribute the 8.
-8b - 32
7.
(1 - 7n) * 5
Rewrite.
5(1 - 7n)
Distribute the 5.
5 - 35n or -35n + 5
8.
-6(x + 4)
Distribute the -6.
-6x - 24
9.
5(3m - 6)
Distribute the 5.
15m - 30
10.
(-6p + 7) * -4
Rewrite.
-4(-6p + 7)
Distribute the -4.
24p - 28
11.
5(b - 1)
Distribute the 5.
5b - 5
12.
(x + 9) * 5
Rewrite.
5(x + 9)
Distribute the 5.
5x + 45
y-3=3(x+1)
opening the bracket
y-3=3x+3
y=3x+3+3
equation of the line in the form y=mx+c;
y=3x+6
therefore gradient=3
parallel lines have same gradient therefore gradient of the other line is 3
y--3/x-0=3
y+3=3(x-0)
y+3=3x-0
y=3x-3.