With a given parallel line and a given point on the line
we can use the point-line method: y-y0=m(x-x0)
where
y=mx+k is the given line, and
(x0,y0) is the given point.
Here
m=-10, k=-5, (x0,y0)=(-3,5)
=> the required line L is given by:
L: y-5=-10(x-(-3))
on simplification
L: y=-10x-30+5
L: y=-10x-25
To solve this, we just need to plug in the numbers.
4^2-4*3/2
Now solve!
4^2-4*3/2
16-4*9
16-36
-20
There's your answer!
Any questions?
Answer:
Harry = 10 toys
Mark = 20 toys
Sue = 20 toys
Step-by-step explanation:
H + M + S = 50
H = M - 10
S = 2H
Harry = 10 toys
Mark = 20 toys
Sue = 20 toys
Answer: 6i) 6a² - 2ab
6ii) -2b³
6iii) b³ + 7b² - 49b
<u>Step-by-step explanation:</u>
6i) (a + b)(5a - 3b) + (a - 3b)(a - b)
= 5a² - 3ab + 5ab - 3b² + a² - ab - 3ab + 3b²
= 5a² + 2ab - 3b² + a² - 4ab + 3b²
= 6a² - 2ab
6ii) (a - b)(a² + b² + ab) - (a + b)(a² + b² - ab)
= a³ + ab² + a²b - ab² - a²b - b³ - (a³ + ab² - a²b -ab² + a²b + b³)
= a³ - b³ - (a³ + b³)
= a³ - b³ - a³ - b³
= -2b³
6iii) (b² - 49)(b + 7) + 343
= b³ + 7b² - 49b - 343 + 343
= b³ + 7b² - 49b
You are allowed a maximum of 3 questions.
Please post #7 on a different question.
41. Degree 3 = x^3 (maximum power in the equation)
Zeros: -1, 1, 3
(x-1)(x+1)(x-3)=f(x) <--- expand as necessary
44. Zeros: -4, 0, 2
(x+4)x(x-2)= f(x) <--- expand as necessary
47. Multiplicity is how many times a particular number is 0 for a given function.
(x+1)(x-1)^3(x-2)^3 <-- not too sure about this one, google definition of multiplicity?
Hope I helped :)