Answer:
a) -27 a³ b⁶
Step-by-step explanation:
<u><em>Explanation:-</em></u>
Given ( -3 ab² )³
By using (ab )ⁿ = aⁿ bⁿ
( -3 ab² )³ = (-3)³ a³ (b²)³
Again , using formula 
= -27 a³ b⁶
Are you still looking for a answer? If so I would love to give you mine.
Answer:
He put 19 cards into each pile.
Step-by-step explanation:
76 cards in total
piles are qbs, wide receivers, tackles, and line backers = 4 piles
"use division"
so 76 divided by 4 equals 19.
d<em>y</em>/d<em>x</em> = 4 + √(<em>y</em> - 4<em>x</em> + 6)
Make a substitution of <em>v(x)</em> = <em>y(x)</em> - 4<em>x</em> + 6, so that d<em>v</em>/d<em>x</em> = d<em>y</em>/d<em>x</em> - 4. Then the DE becomes
d<em>v</em>/d<em>x</em> + 4 = 4 + √<em>v</em>
d<em>v</em>/d<em>x</em> = √<em>v</em>
which is separable as
d<em>v</em>/√<em>v</em> = d<em>x</em>
Integrating both sides gives
2√<em>v</em> = <em>x</em> + <em>C</em>
Get the solution back in terms of <em>y</em> :
2√(<em>y</em> - 4<em>x</em> + 6) = <em>x</em> + <em>C</em>
You can go on to solve for <em>y</em> explicitly if you want.
√(<em>y</em> - 4<em>x</em> + 6) = <em>x</em>/2 + <em>C</em>
<em>y</em> - 4<em>x</em> + 6 = (<em>x</em>/2 + <em>C </em>)²
<em>y</em> = 4<em>x</em> - 6 + (<em>x</em>/2 + <em>C </em>)²