Answer: M^-1 L^-3T^4A^2
Explanation:
From coloumb's law
K = q1q2 / (F × r^2)
Where;
q1, q2 = charges
k = constant (permittivity of free space)
r = distance
Charge (q) = current(A) × time(T) = TA
THEREFORE,
q1q2 = (TA) × (TA) = (TA)^2
Velocity = Distance(L) / time(T) = L/T
Acceleration = change in Velocity(L/T) / time (T)
Therefore, acceleration = LT^-2
Force(F) = Mass(M) × acceleration (LT^-2)
Force(F) = MLT^-2
Distance(r^2) = L^2
From ; K = q1q2 / (F × r^2)
K = (TA)^2 / (MLT^-2) (L^2)
K = T^2A^2M^-1L^-1T^2 L^-2
COLLEXTING LIKE TERMS
T^2+2 A^2 M^-1 L^-1-2
M^-1 L^-3T^4A^2
Answer:
assuming ur speaking about chemistry
c=frequency×wavelength
or
energy=frequency×h
Answer:
D) not enough information to decide
Explanation:
Data provided in the question
The True weight of book stacks = 165 N
Reading of the scale = 165 N
Constant velocity = 2 m/s upward or downward
Based on the above information
If you moved at a constant velocity the scale interprets the same because of the momentum you've got. The scale will change the number only when acceleration is present.
Therefore in the given situation, the option D is correct as it not have enough information for deciding it
Answer:
so throwers new velocity = 2.18032m/s
so catchers new velocity = 0.02577m/s
Explanation:
Directly by conservation of momentum we can write

let x be the thrower's new velocity
(70+0.042)×2.2 + 57×0 = 70× x +0.042×35 +57×0
x = 2.18032m/s
so the velocity of 70 kg man = 2.18032m/s
so throwers new velocity = 2.18032m/s
now again by conservation of momentum
0.042×35 = (57+0.042) ×y
y = 0.02577m/s
so catchers new velocity = 0.02577m/s
To answer this item, it is assumed that the gas in the cylinder is ideal such that it follows the equation,
PV = nRT
when V is to be calculated,
V = nRT/P
V = (4)(0.0821 L.atm/molK)(300 K) / (400 kPa/101.325 kPa/atm)
V = 24.95 L
Thus, the volume of gas in the cylinder is 24.95 L.