That's true. The only way to stop an object from radiating energy
is to cool it to absolute zero. Since the temperature of space is
roughly 3 degrees above absolute zero, the atoms or molecules
of every object have some kinetic energy, and the object radiates
some heat.
Of course it also absorbs heat at the same time, mostly from the
huge number of stars shining on it.
Answer:
you forgot to attach the image
Answer:
w = 0.173 N
Explanation:
The weigh of any object is computed by multiplying its mass to the acceleration of gravity, so we need to find the gravity on that planet in order to compute the weigh we want.
The ball has a mass of 0.1 kg and its released from a height of 10 m, therefore it is in a free fall motion with gravity acting as a constant acceleration on the body, we can use the equations for free fall movement in order to determine the value for this acceleration:
y(t) = v_0 * t + y_0 - 0.5 * g * t^2
y(t) is the position in the end of the movement, when t = 3.4 s, so y(t) = 0 m.
v_0 is the initial velocity, in this case v_0 = 0 m/s.
y_0 is the initial position of the ball, in this case it is 10 m.
g is the gravity that we want to know.
Applying these values in the equation we have:
0 = 0*(3.4) + 10 - 0.5*g*(3.4)^2
0 = 10 - 0.5*11.56*g
0 = 10 -5.78*g
5.78*g = 10
g = 1.73 m/s^2
Then we can use this value to find out the weigh of the ball in that planet:
w = g*m = 0.1*1.73 = 0.173 N
Answer:
Torque on the coil will be ZERO
Explanation:
As we know that the magnetic moment of the closed current carrying coil is always along its axis and it is given as

now we know that magnetic field is also along the axis of the coil so here as we know the equation of torque given as

so we have

