1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
raketka [301]
3 years ago
10

On Tuesday Emily bought nine hats. on Wednesday half of all the hats that she had were destroyed. on Thursday there were only 24

left. How many did she have on Monday?
Mathematics
1 answer:
umka21 [38]3 years ago
3 0

Answer:

33 i think

Step-by-step explanation:

sorry im not that smart but i did the math so it should be 33

You might be interested in
Determine whether the following events are mutually exclusive:
Harman [31]

Answer:

non mutually exclusive event

Step-by-step explanation:

im not sure on this tho

3 0
3 years ago
Read 2 more answers
(a) Use the definition to find an expression for the area under the curve y = x3 from 0 to 1 as a limit. lim n→∞ n i = 1 Correct
Luba_88 [7]

Splitting up the interval of integration into n subintervals gives the partition

\left[0,\dfrac1n\right],\left[\dfrac1n,\dfrac2n\right],\ldots,\left[\dfrac{n-1}n,1\right]

Each subinterval has length \dfrac{1-0}n=\dfrac1n. The right endpoints of each subinterval follow the sequence

r_i=\dfrac in

with i=1,2,3,\ldots,n. Then the left-endpoint Riemann sum that approximates the definite integral is

\displaystyle\sum_{i=1}^n\frac{{r_i}^3}n

and taking the limit as n\to\infty gives the area exactly. We have

\displaystyle\lim_{n\to\infty}\frac1n\sum_{i=1}^n\left(\frac in\right)^3=\lim_{n\to\infty}\frac{n^2(n+1)^2}{4n^3}=\boxed{\frac14}

6 0
3 years ago
Enter a negative number that is greater than -5.​
bixtya [17]

Answer:

+5 is greater that -5 and is also a opposite integer.

6 0
3 years ago
Read 2 more answers
A snail crawled of a centimeter in 2 minutes. At that rate, how far could the snail crawl in 1
vekshin1

Answer:30 centimeters in 1 minute

8 0
3 years ago
A box designer has been charged with the task of determining the surface area of various open boxes (no lid) that can be constru
Viktor [21]

Answer:

1) S = 2\cdot w\cdot l - 8\cdot x^{2}, 2) The domain of S is 0 \leq x \leq \frac{\sqrt{w\cdot l}}{2}. The range of S is 0 \leq S \leq 2\cdot w \cdot l, 3) S = 176\,in^{2}, 4) x \approx 4.528\,in, 5) S = 164.830\,in^{2}

Step-by-step explanation:

1) The function of the box is:

S = 2\cdot (w - 2\cdot x)\cdot x + 2\cdot (l-2\cdot x)\cdot x +(w-2\cdot x)\cdot (l-2\cdot x)

S = 2\cdot w\cdot x - 4\cdot x^{2} + 2\cdot l\cdot x - 4\cdot x^{2} + w\cdot l -2\cdot (l + w)\cdot x + l\cdot w

S = 2\cdot (w+l)\cdot x - 8\cdpt x^{2} + 2\cdot w \cdot l - 2\cdot (l+w)\cdot x

S = 2\cdot w\cdot l - 8\cdot x^{2}

2) The maximum cutout is:

2\cdot w \cdot l - 8\cdot x^{2} = 0

w\cdot l - 4\cdot x^{2} = 0

4\cdot x^{2} = w\cdot l

x = \frac{\sqrt{w\cdot l}}{2}

The domain of S is 0 \leq x \leq \frac{\sqrt{w\cdot l}}{2}. The range of S is 0 \leq S \leq 2\cdot w \cdot l

3) The surface area when a 1'' x 1'' square is cut out is:

S = 2\cdot (8\,in)\cdot (11.5\,in)-8\cdot (1\,in)^{2}

S = 176\,in^{2}

4) The size is found by solving the following second-order polynomial:

20\,in^{2} = 2 \cdot (8\,in)\cdot (11.5\,in)-8\cdot x^{2}

20\,in^{2} = 184\,in^{2} - 8\cdot x^{2}

8\cdot x^{2} - 164\,in^{2} = 0

x \approx 4.528\,in

5) The equation of the box volume is:

V = (w-2\cdot x)\cdot (l-2\cdot x) \cdot x

V = [w\cdot l -2\cdot (w+l)\cdot x + 4\cdot x^{2}]\cdot x

V = w\cdot l \cdot x - 2\cdot (w+l)\cdot x^{2} + 4\cdot x^{3}

V = (8\,in)\cdot (11.5\,in)\cdot x - 2\cdot (19.5\,in)\cdot x^{2} + 4\cdot x^{3}

V = (92\,in^{2})\cdot x - (39\,in)\cdot x^{2} + 4\cdot x^{3}

The first derivative of the function is:

V' = 92\,in^{2} - (78\,in)\cdot x + 12\cdot x^{2}

The critical points are determined by equalizing the derivative to zero:

12\cdot x^{2}-(78\,in)\cdot x + 92\,in^{2} = 0

x_{1} \approx 4.952\,in

x_{2}\approx 1.548\,in

The second derivative is found afterwards:

V'' = 24\cdot x - 78\,in

After evaluating each critical point, it follows that x_{1} is an absolute minimum and x_{2} is an absolute maximum. Hence, the value of the cutoff so that volume is maximized is:

x \approx 1.548\,in

The surface area of the box is:

S = 2\cdot (8\,in)\cdot (11.5\,in)-8\cdot (1.548\,in)^{2}

S = 164.830\,in^{2}

4 0
2 years ago
Other questions:
  • Which box plot correctly represent the data ?
    14·1 answer
  • If f(–5) = 0, what are all the factors of the function f(x)=x^3-19x+30? Use the Remainder Theorem.
    9·2 answers
  • The sum of the digits of a certain two-digit number is 9. When you reverse its digits you increase the number by 63. What is the
    10·1 answer
  • What is the slope?
    8·2 answers
  • If 6m by 15m is a pond ,is 40m would be enough for fencing the pond
    9·1 answer
  • Write an inequality for the situation. There are more than 65 children in the yard.
    8·1 answer
  • HELP ME ASAP PLEASE ?!?Give the coordinates of point A.
    15·2 answers
  • Helppppppppppppppppppppp
    13·2 answers
  • ILL GIVE YOU BRAINLEST IF RIGHT
    6·2 answers
  • 90 over 7 EndFraction divided by 1 and three-fourths
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!