Answer:
A=152
K= -Ln(0.5)/14
Step-by-step explanation:
You can obtain two equations with the given information:
T(14 minutes) = 114◦C
T(28 minutes)=152◦C
Therefore, you have to replace t=14, T=114 and t=28, T=152 in the given equation:

Applying the following property of exponentials numbers in (II):

Therefore
can be written as 
Replacing (I) in the previous equation:

Solving for k:
Subtracting 190 both sides, dividing by -76:

Applying the base e logarithm both sides:
Ln(0.5)= -14k
Dividing by -14:
k= -Ln(0.5)/14
Replacing k in (I) and solving for A:

Dividing by 0.5
A=152