the perimeter will then just be the sum of the distances of A, B and C, namely AB + BC + CA.
![\bf ~~~~~~~~~~~~\textit{distance between 2 points}\\\\A(\stackrel{x_1}{-2}~,~\stackrel{y_1}{-2})\qquadB(\stackrel{x_2}{0}~,~\stackrel{y_2}{5})\qquad \qquadd = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2}\\\\\\AB=\sqrt{[0-(-2)]^2+[5-(-2)]^2}\implies AB=\sqrt{(0+2)^2+(5+2)^2}\\\\\\AB=\sqrt{4+49}\implies \boxed{AB=\sqrt{53}}\\\\[-0.35em]\rule{34em}{0.25pt}\\\\B(\stackrel{x_2}{0}~,~\stackrel{y_2}{5})\qquad C(\stackrel{x_1}{3}~,~\stackrel{y_1}{1})\\\\\\BC=\sqrt{(3-0)^2+(1-5)^2}\implies BC=\sqrt{3^2+(-4)^2}](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~~~~~~~%5Ctextit%7Bdistance%20between%202%20points%7D%5C%5C%5C%5CA%28%5Cstackrel%7Bx_1%7D%7B-2%7D~%2C~%5Cstackrel%7By_1%7D%7B-2%7D%29%5CqquadB%28%5Cstackrel%7Bx_2%7D%7B0%7D~%2C~%5Cstackrel%7By_2%7D%7B5%7D%29%5Cqquad%20%5Cqquadd%20%3D%20%5Csqrt%7B%28%20x_2-%20x_1%29%5E2%20%2B%20%28%20y_2-%20y_1%29%5E2%7D%5C%5C%5C%5C%5C%5CAB%3D%5Csqrt%7B%5B0-%28-2%29%5D%5E2%2B%5B5-%28-2%29%5D%5E2%7D%5Cimplies%20AB%3D%5Csqrt%7B%280%2B2%29%5E2%2B%285%2B2%29%5E2%7D%5C%5C%5C%5C%5C%5CAB%3D%5Csqrt%7B4%2B49%7D%5Cimplies%20%5Cboxed%7BAB%3D%5Csqrt%7B53%7D%7D%5C%5C%5C%5C%5B-0.35em%5D%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5CB%28%5Cstackrel%7Bx_2%7D%7B0%7D~%2C~%5Cstackrel%7By_2%7D%7B5%7D%29%5Cqquad%20C%28%5Cstackrel%7Bx_1%7D%7B3%7D~%2C~%5Cstackrel%7By_1%7D%7B1%7D%29%5C%5C%5C%5C%5C%5CBC%3D%5Csqrt%7B%283-0%29%5E2%2B%281-5%29%5E2%7D%5Cimplies%20BC%3D%5Csqrt%7B3%5E2%2B%28-4%29%5E2%7D)
![\bf BC=\sqrt{9+16}\implies \boxed{BC=5}\\\\[-0.35em]\rule{34em}{0.25pt}\\\\C(\stackrel{x_2}{3}~,~\stackrel{y_2}{1})\qquad A(\stackrel{x_1}{-2}~,~\stackrel{y_1}{-2})\\\\\\CA=\sqrt{(-2-3)^2+(-2-1)^2}\implies CA=\sqrt{(-5)^2+(-3)^2}\\\\\\CA=\sqrt{25+9}\implies \boxed{CA=\sqrt{34}}\\\\[-0.35em]\rule{34em}{0.25pt}\\\\~\hfill \stackrel{AB+BC+CA}{\approx 18.11}~\hfill](https://tex.z-dn.net/?f=%5Cbf%20BC%3D%5Csqrt%7B9%2B16%7D%5Cimplies%20%5Cboxed%7BBC%3D5%7D%5C%5C%5C%5C%5B-0.35em%5D%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5CC%28%5Cstackrel%7Bx_2%7D%7B3%7D~%2C~%5Cstackrel%7By_2%7D%7B1%7D%29%5Cqquad%20A%28%5Cstackrel%7Bx_1%7D%7B-2%7D~%2C~%5Cstackrel%7By_1%7D%7B-2%7D%29%5C%5C%5C%5C%5C%5CCA%3D%5Csqrt%7B%28-2-3%29%5E2%2B%28-2-1%29%5E2%7D%5Cimplies%20CA%3D%5Csqrt%7B%28-5%29%5E2%2B%28-3%29%5E2%7D%5C%5C%5C%5C%5C%5CCA%3D%5Csqrt%7B25%2B9%7D%5Cimplies%20%5Cboxed%7BCA%3D%5Csqrt%7B34%7D%7D%5C%5C%5C%5C%5B-0.35em%5D%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C~%5Chfill%20%5Cstackrel%7BAB%2BBC%2BCA%7D%7B%5Capprox%2018.11%7D~%5Chfill)
When two shapes are mathematically similar, that means that all their sides are in a proportion.
We know the sieds of EH and AD, and so we can find the proportion of the shapes using these two sides.
EH/AD = 6/9 = 2/3
The ratio of EFGH to ABCD is 2:3
Now we have to find BC.
Becuase they're in proportion, we can form this equation:
= 
Cross multiply:
24 = 2*BC
Divide both sides by 2:
BC = 12 cm
Good luck!
i am not shure what the answer is to this?
Part A: x = -5/4, 3 || (-5/4, 0) (3, 0)
To find the x-intercepts, we need to know where y is equal to 0. So, we will set the function equal to 0 and solve for x.
4x^2 - 7x - 15 = 0
4 x 15 = 60 || -12 x 5 = 60 || -12 + 5 = -7
4x^2 - 12x + 5x - 15 = 0
4x(x - 3) + 5(x - 3) = 0
(4x + 5)(x - 3) = 0
4x + 5 = 0
x = -5/4
x - 3 = 0
x = 3
Part B: minimum, (7/8, -289/16)
The vertex of the graph will be a minimum. This is because the parabola is positive, meaning that it opens to the top.
To find the coordinates of the parabola, we start with the x-coordinate. The x-coordinate can be found using the equation -b/2a.
b = -7
a = 4
x = -(-7) / 2(4) = 7/8
Now that we know the x-value, we can plug it into the function and solve for the y-value.
y = 4(7/8)^2 - 7(7/8) - 15
y = 4(49/64) - 49/8 - 15
y = 196/64 - 392/64 - 960/64
y = -1156/64 = -289/16 = -18 1/16
Part C:
First, start by graphing the vertex. Then, use the x-intercepts and graph those. At this point we should have three points in a sort of triangle shape. If we did it right, each of the x-values will be an equal distance from the vertex. After we have those points graphed, it is time to draw in the parabola. Knowing that the parabola is positive, we draw in a U shape that passes through each of the three points and opens toward the top of the coordinate grid.
Hope this helps!
Answer: the second one
Step-by-step explanation: