You gotta put more information out buddy
There are 12 inches in a foot, so 9ft = 108in. Also, 80% = 0.8. Therefore the formula is:
h(n) = 108 * 0.8^n.
To find the bounce height after 10 bounces, substitute n=10 into the equation:
h(n) = 108 * 0.8^10 = 11.60in (2.d.p.).
Finally to find how many bounces happen before the height is less than one inch, substitute h(n) = 1, then rearrage with logarithms to solve for the power, x:
108 * 0.8^x = 1;
0.8^x = 1/108;
Ln(0.8^x) = ln(1/108);
xln(0.8) = ln(1\108);
x = ln(1/108) / ln(0.8) = -4.682 / -0.223 = 21 bounces
Answer:
<u>Same side angles are supplementary</u>
L+k=180
18x-18+72=180
18x=126
x=7
m∠18(7)-18
= 108°
---------------------
hope it helps...
have a grat day
y + 8 = 1/3 (x+6)
With the given information, we can use the point-slope formula, , to write the equation of the line. Substitute values for the , , and in the formula to do so.
The represents the slope, so substitute in its place. The and represent the x and y values of one point the line intersects, so substitute -6 for and -8 for . This gives the following answer and equation (just make sure to convert the double negatives into positives:
Y=2x2−8x+5 is standard form