Answer:
The length of the third side is between 16 inches and 64 inches.
Step-by-step explanation:
The length of a side of a triangle is between the sum and the difference of the lengths of the other two sides.
First, we need both sides in the same units. Let's convert feet to inches.
2 ft * (12 in.)/(ft) = 24 in.
The sides measure 24 inches and 40 inches.
Now we add and subtract the two lengths.
40 in. + 24 in. = 64 in.
40 in. - 24 in. = 16 in.
The length of the third side is between 16 inches and 64 inches.
Because ABCD is an isosceles trapezoid, the angles A and D are congruent.
BA and CD are congruent (given) and AD is congruent to itself (reflexive property).
Then triangles BAD and CDA form a pair of SAS triangles, so they are congruent.
BD and CA are corresponding parts in those triangles, so they are congruent (CPCTC).
Answer:
A 29 is the answer to the problem
Answer:

Step-by-step explanation:
3t + 2 < 7 OR −4t + 5 < 1
- 2 - 2 - 5 - 5
___________________

**Whenever you divide\multiply by a <em>negative</em><em> </em><em>integer</em>, you reverse the inequality symbol given to you <em>initially</em>.
<u>Extended</u><u> </u><u>Information</u><u> </u><u>on</u><u> </u><u>Inequalities</u>
≤, ≥ [dark circle with a dark line (<em>brackets</em><em> </em>when writing in <em>Interval</em><em> </em><em>Notation</em>)]
<, > [<em>light</em><em> </em><em>circle</em><em> </em>with a <em>dashed</em><em> </em><em>line</em><em> </em>(<em>parenthese</em><em>s</em><em> </em>when writing in <em>Interval</em><em> </em><em>Notation</em>)]
I am delighted to assist you at any time.
<em>As</em><em> </em><em>you</em><em> </em><em>can see</em><em> </em><em>in</em><em> </em><em>the</em><em> </em><em>above</em><em> </em><em>graph</em><em>,</em><em> </em><em>the</em><em> </em><em>graph</em><em> </em><em>is</em><em> </em><em>connected</em><em> </em><em>ALTOGETHER</em><em>.</em><em> </em><em>Be</em><em> </em><em>aware</em><em> </em><em>that</em><em> </em><em>this</em><em> </em><em>will</em><em> </em><em>not</em><em> </em><em>ALWAYS</em><em> </em><em>be</em><em> </em><em>the</em><em> </em><em>case</em><em> </em><em>because</em><em> </em><em>a</em><em> </em><em>majourity</em><em> </em><em>of</em><em> </em><em>these</em><em> </em><em>graphs</em><em> </em><em>are</em><em> </em><em>seperated</em><em>,</em><em> </em><em>pointing</em><em> </em><em>in</em><em> </em><em>OPPOSITE</em><em> </em>directions.