Note: you did not provide the answer options, so I am, in general, solving this query to solve your concept, which anyways would clear your concept.
Answer:
Please check the explanation.
Step-by-step explanation:
Given the inequality

All we need is to find any random value of 'x' and then solve the inequality.
For example, putting x=3









So, at x = 3, the calculation shows that the value of y must be less
than 1 i.e. y<1 in order to be the solution.
Let us take the random y value that is less than 1.
As y=0.9 < 1
so putting y=0.9 in the inequality



Means at x=3, and y=0.9, the inequality is satisfied.
Thus, (3, 0.9) is one of the many ordered pairs solutions to the inequality 3x-4y>5.
Steps:
18 x 2
What is that?
You can also think of it as 9 x 4 if that is easier
Then whatever you got for that, add 21 then subtract 12 and add 1
Answer: b
explanation: only choice B equals -9 like the given equation.
Answer:

Step-by-step explanation:
By applying the concept of calculus;
the moment of inertia of the lamina about one corner
is:

where :
(a and b are the length and the breath of the rectangle respectively )


![I_{corner} = \rho [\frac{bx^3}{3}+ \frac{b^3x}{3}]^ {^ a} _{_0}](https://tex.z-dn.net/?f=I_%7Bcorner%7D%20%3D%20%20%5Crho%20%5B%5Cfrac%7Bbx%5E3%7D%7B3%7D%2B%20%5Cfrac%7Bb%5E3x%7D%7B3%7D%5D%5E%20%7B%5E%20a%7D%20_%7B_0%7D)
![I_{corner} = \rho [\frac{a^3b}{3}+ \frac{ab^3}{3}]](https://tex.z-dn.net/?f=I_%7Bcorner%7D%20%3D%20%20%5Crho%20%5B%5Cfrac%7Ba%5E3b%7D%7B3%7D%2B%20%5Cfrac%7Bab%5E3%7D%7B3%7D%5D)

Thus; the moment of inertia of the lamina about one corner is 
Answer:
1
Step-by-step explanation: