Answer:
-60
Step-by-step explanation:
The objective is to state whether or not the following limit exists
.
First, we simplify the expression in the numerator of the fraction.

Now, we obtain

and the fraction is transformed into

Therefore, the following limit is

You can plug in
in the equation, hence

<span>we have that
the cube roots of 27(cos 330° + i sin 330°) will be
</span>∛[27(cos 330° + i sin 330°)]
we know that
e<span>^(ix)=cos x + isinx
therefore
</span>∛[27(cos 330° + i sin 330°)]------> ∛[27(e^(i330°))]-----> 3∛[(e^(i110°)³)]
3∛[(e^(i110°)³)]--------> 3e^(i110°)-------------> 3[cos 110° + i sin 110°]
z1=3[cos 110° + i sin 110°]
cube root in complex number, divide angle by 3
360nº/3 = 120nº --> add 120º for z2 angle, again for z3
<span>therefore
</span>
z2=3[cos ((110°+120°) + i sin (110°+120°)]------ > 3[cos 230° + i sin 230°]
z3=3[cos (230°+120°) + i sin (230°+120°)]--------> 3[cos 350° + i sin 350°]
<span>
the answer is
</span>z1=3[cos 110° + i sin 110°]<span>
</span>z2=3[cos 230° + i sin 230°]
z3=3[cos 350° + i sin 350°]<span>
</span>

You didn't provide the "given point", but I assume you're capable of plugging it in.
False. When a quadrilateral has two sets of parallel sides ,like I drew below, all four corners form right angles.
0 is the answer! that is because 62 is also the mean.