Answer:
yes.
Step-by-step explanation:
90 Degree Rotation. When rotating a point 90 degrees counterclockwise about the origin our point A(x,y) becomes A'(-y,x).
F(1) = 160 is given to us. We'll use it to find f(2)
f(n+1) = -2*f(n)
f(1+1) = -2*f(1) ... replace every n with 1
f(1+1) = -2*160 ... replace f(1) with 160
f(2) = -320
Now use f(2) to find f(3)
f(n+1) = -2*f(n)
f(2+1) = -2*f(2) ... replace every n with 2
f(3) = -2*(-320) ... replace f(2) with -320
f(3) = 640
Finally, use f(3) to find f(4)
f(n+1) = -2*f(n)
f(3+1) = -2*f(3) ... replace every n with 3
f(4) = -2*640 ... replace f(3) with 640
f(4) = -1280
Final Answer: -1280
Answer:
huh?
Step-by-step explanation:
The given equation
x/2 = y/3 = z/4
can be broken into three separate equations which I'll call equations (A), (B) and (C)
- x/2 = y/3 ..... equation (A)
- y/3 = z/4 .... equation (B)
- x/2 = z/4 .... equation (C)
We'll start off solving for z in equation (C)
x/2 = z/4
4x = 2z ... cross multiply
2z = 4x
z = 4x/2 ... divide both sides by 2
z = 2x
Now let's solve for y in equation (A)
x/2 = y/3
3x = 2y
2y = 3x
y = 3x/2
y = (3/2)x
y = 1.5x
The results of z = 2x and y = 1.5x both have the right hand sides in terms of x. This will allow us to replace the variables y and z with something in terms of x, which means we'll have some overall expression with x only. The idea is that expression should simplify to 3 if we played our cards right.
We won't be using equation (B) at all.
---------------------
The key takeaway from the last section is that
Let's plug those items into the expression (2x-y+5z)/(3y-x) to get the following:
(2x-y+5z)/(3y-x)
(2x-y+5(2x))/(3y-x) ..... plug in z = 2x
(2x-y+10x)/(3y-x)
(12x-y)/(3y-x)
(12x-1.5x)/(3(1.5x)-x) .... plug in y = 1.5x
(12x-1.5x)/(4.5x-x)
(10.5x)/(3.5x)
(10.5)/(3.5)
3
We've shown that plugging z = 2x and y = 1.5x into the expression above simplifies to 3. Therefore, the equation (2x-y+5z)/(3y-x) = 3 is true when x/2 = y/3 = z/4. This concludes the proof.