1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ehidna [41]
3 years ago
8

32t^2-18u^2 what is it?

Mathematics
1 answer:
Naily [24]3 years ago
4 0
It is 2(4t+3u) (4t-3u)
You might be interested in
two containers filled with water are leaking. container A leaks at a rate of 2/3 gallon every 1/4 hour. Container B leaks at a r
devlian [24]

This might help u.....

6 0
3 years ago
Find they area of a regular hexagon with a side length of 10 inches
Vitek1552 [10]
A≈259.81in²

I hope this helped!!
3 0
3 years ago
Divide. 413÷129 Enter your answer, as a mixed number in simplest form, in the box.
kompoz [17]

For this case we must divide the following expression:

\frac {413} {129}

The expression can not be simplified. When dividing we have that its decimal form is given by:

3,201550

If we convert to a mixed number we have:

3 \frac {26} {129}

Verifying:

3 \frac {26} {129} = \frac {129 * 3 + 26} {129} = \frac {413} {129}

Answer:

3 \frac {26} {129}

5 0
3 years ago
Suppose integral [4th root(1/cos^2x - 1)]/sin(2x) dx = A<br>What is the value of the A^2?<br><br>​
Alla [95]

\large \mathbb{PROBLEM:}

\begin{array}{l} \textsf{Suppose }\displaystyle \sf \int \dfrac{\sqrt[4]{\frac{1}{\cos^2 x} - 1}}{\sin 2x}\ dx = A \\ \\ \textsf{What is the value of }\sf A^2? \end{array}

\large \mathbb{SOLUTION:}

\!\!\small \begin{array}{l} \displaystyle \sf A = \int \dfrac{\sqrt[4]{\frac{1}{\cos^2 x} - 1}}{\sin 2x}\ dx \\ \\ \textsf{Simplifying} \\ \\ \displaystyle \sf A = \int \dfrac{\sqrt[4]{\sec^2 x - 1}}{\sin 2x}\ dx \\ \\ \displaystyle \sf A = \int \dfrac{\sqrt[4]{\tan^2 x}}{\sin 2x}\ dx \\ \\ \displaystyle \sf A = \int \dfrac{\sqrt{\tan x}}{\sin 2x}\ dx \\ \\ \displaystyle \sf A = \int \dfrac{\sqrt{\tan x}}{\sin 2x}\cdot \dfrac{\sqrt{\tan x}}{\sqrt{\tan x}}\ dx \\ \\ \displaystyle \sf A = \int \dfrac{\tan x}{\sin 2x\ \sqrt{\tan x}}\ dx \\ \\ \displaystyle \sf A = \int \dfrac{\dfrac{\sin x}{\cos x}}{2\sin x \cos x \sqrt{\tan x}}\ dx\:\:\because {\scriptsize \begin{cases}\:\sf \tan x = \frac{\sin x}{\cos x} \\ \: \sf \sin 2x = 2\sin x \cos x \end{cases}} \\ \\ \displaystyle \sf A = \int \dfrac{\dfrac{1}{\cos^2 x}}{2\sqrt{\tan x}}\ dx \\ \\ \displaystyle \sf A = \int \dfrac{\sec^2 x}{2\sqrt{\tan x}}\ dx, \quad\begin{aligned}\sf let\ u &=\sf \tan x \\ \sf du &=\sf \sec^2 x\ dx \end{aligned} \\ \\ \textsf{The integral becomes} \\ \\ \displaystyle \sf A = \dfrac{1}{2}\int \dfrac{du}{\sqrt{u}} \\ \\ \sf A= \dfrac{1}{2}\cdot \dfrac{u^{-\frac{1}{2} + 1}}{-\frac{1}{2} + 1} + C = \sqrt{u} + C \\ \\ \sf A = \sqrt{\tan x} + C\ or\ \sqrt{|\tan x|} + C\textsf{ for restricted} \\ \qquad\qquad\qquad\qquad\qquad\qquad\quad \textsf{values of x} \\ \\ \therefore \boxed{\sf A^2 = (\sqrt{|\tan x|} + c)^2} \end{array}

\boxed{ \tt   \red{C}arry  \: \red{ O}n \:  \red{L}earning}  \:  \underline{\tt{5/13/22}}

4 0
2 years ago
A regression equation was estimated as = –100 + 0.5x. if x = 20,the predicted value of y is _____.
ratelena [41]
Any answer things? :|
5 0
3 years ago
Other questions:
  • Which means "the sum of w and 3.4 is greater than or equal to 10.5"?
    9·2 answers
  • If k=, then what is –K?
    10·2 answers
  • Step by step please​
    5·1 answer
  • How do you show a model for 3/4× 1/3
    6·2 answers
  • Sonny has $75 to spend. The purchasehewants to make requires $93. If he borrows the extra money that he needs how much does he n
    8·1 answer
  • Draw an array for 3x8
    14·2 answers
  • Please help me with this
    15·1 answer
  • If f(1) = 2 and f(n) = f(n − 1)2 + 3 then find the value of f(3).
    10·1 answer
  • Please help! Due tomorrow!!!
    5·1 answer
  • I need help if you answer this your littearly a pro hacker pls​
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!