Check the picture below.
well, we want only the equation of the diametrical line, now, the diameter can touch the chord at any several angles, as well at a right-angle.
bearing in mind that <u>perpendicular lines have negative reciprocal</u> slopes, hmm let's find firstly the slope of AB, and the negative reciprocal of that will be the slope of the diameter, that is passing through the midpoint of AB.
![\bf A(\stackrel{x_1}{1}~,~\stackrel{y_1}{4})\qquad B(\stackrel{x_2}{5}~,~\stackrel{y_2}{1}) ~\hfill \stackrel{slope}{m}\implies \cfrac{\stackrel{rise} {\stackrel{y_2}{1}-\stackrel{y1}{4}}}{\underset{run} {\underset{x_2}{5}-\underset{x_1}{1}}}\implies \cfrac{-3}{4} \\\\[-0.35em] ~\dotfill\\\\ \stackrel{\textit{slope of AB}}{-\cfrac{3}{4}}\qquad \qquad \qquad \stackrel{\textit{\underline{negative reciprocal} and slope of the diameter}}{\cfrac{4}{3}}](https://tex.z-dn.net/?f=%5Cbf%20A%28%5Cstackrel%7Bx_1%7D%7B1%7D~%2C~%5Cstackrel%7By_1%7D%7B4%7D%29%5Cqquad%20B%28%5Cstackrel%7Bx_2%7D%7B5%7D~%2C~%5Cstackrel%7By_2%7D%7B1%7D%29%20~%5Chfill%20%5Cstackrel%7Bslope%7D%7Bm%7D%5Cimplies%20%5Ccfrac%7B%5Cstackrel%7Brise%7D%20%7B%5Cstackrel%7By_2%7D%7B1%7D-%5Cstackrel%7By1%7D%7B4%7D%7D%7D%7B%5Cunderset%7Brun%7D%20%7B%5Cunderset%7Bx_2%7D%7B5%7D-%5Cunderset%7Bx_1%7D%7B1%7D%7D%7D%5Cimplies%20%5Ccfrac%7B-3%7D%7B4%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Bslope%20of%20AB%7D%7D%7B-%5Ccfrac%7B3%7D%7B4%7D%7D%5Cqquad%20%5Cqquad%20%5Cqquad%20%5Cstackrel%7B%5Ctextit%7B%5Cunderline%7Bnegative%20reciprocal%7D%20and%20slope%20of%20the%20diameter%7D%7D%7B%5Ccfrac%7B4%7D%7B3%7D%7D)
so, it passes through the midpoint of AB,

so, we're really looking for the equation of a line whose slope is 4/3 and runs through (3 , 5/2)

Answer:
the answer of this question is given in above picture, look
Answer:
<h2><em><u>MY </u></em><em><u>ANSWER </u></em><em><u>IS </u></em><em><u>E.</u></em></h2>
<em><u>HOPE </u></em><em><u>IT </u></em><em><u>HELPS</u></em><em><u> ❤️</u></em>
X= -4y let this be equation 1
x+5y=2 let this be equation 2
substitute equation 1 in 2
-4y + 5y = 2
y=2
substitute the value of y in equation 1
x= -4y
x= -4(2)
x= -8
So your goal is to set it equal to Y, so you have to start by subtracting k and you get t-k, then you have to get rid of the fraction by multiplying both sides by the denominator (n), so then you get n(t-k) and the only thing left is to divide by the e, and you get 4