Answer:
x = 19.9
Step-by-step explanation:
Given the above right angled triangle, we can find the missing side, x, using the trigonometric ratio formula.
The given angle (θ) = 19°
The adjacent length = x
Hypotenuse length = 21
Thus,
Cos (θ) = adjacent/hypotenuse
![cos 19 = \frac{x}{21}](https://tex.z-dn.net/?f=%20cos%2019%20%3D%20%5Cfrac%7Bx%7D%7B21%7D%20)
![0.9455 = \frac{x}{21}](https://tex.z-dn.net/?f=%200.9455%20%3D%20%5Cfrac%7Bx%7D%7B21%7D%20)
Multiply both sides by 21 to solve for x
![0.9455*21 = x](https://tex.z-dn.net/?f=%200.9455%2A21%20%3D%20x%20)
![0.9455*21 = x](https://tex.z-dn.net/?f=%200.9455%2A21%20%3D%20x%20)
Answer:
x =
Step-by-step explanation:
Given the above right angled triangle, we can find the missing side, x, using the trigonometric ratio formula.
The given angle (θ) = 19°
The adjacent length = x
Hypotenuse length = 21
Thus,
Cos (θ) = adjacent/hypotenuse
![cos 19 = \frac{x}{21}](https://tex.z-dn.net/?f=%20cos%2019%20%3D%20%5Cfrac%7Bx%7D%7B21%7D%20)
![0.9455 = \frac{x}{21}](https://tex.z-dn.net/?f=%200.9455%20%3D%20%5Cfrac%7Bx%7D%7B21%7D%20)
Multiply both sides by 21 to solve for x
![0.9455*21 = x](https://tex.z-dn.net/?f=%200.9455%2A21%20%3D%20x%20)
![19.86 = x](https://tex.z-dn.net/?f=%2019.86%20%3D%20x%20)
![x = 19.86](https://tex.z-dn.net/?f=%20x%20%3D%2019.86%20)
The missing side = x ≈ 19.9 (to the nearest tenth)