The answer to this question is the letter "A" which is $20.70. The solution is shown below:
If the guy will solely use the car, his expenses for the gasoline per month is:
Guy alone = $ 2.76/gallon * 15 gallons = $ 41.4
If the guy will let his two officemates ride the car and contribute each quarter of the of a tank:
First officemate = 15/4 * $2.76 = $ 10.35
Second officemate = 15/4 * $2.76 = $10.35
The guy total savings is shown below:
Total savings = $41.4 - $10.35 -$10.35
Total savings = $20.70
The answer is the letter "A".
La ecuación que nos dice cuantas niñas hay en el colegio es:
A = x - c*m
¿Como encontrar una expresión para la cantidad de niñas?
Sabemos que hay un total de x estudiantes, definimos las variables:
- A = cantidad total de niñas
- B = cantidad total de niños.
Entonces tenemos A + B = x
Tambien sabemos que los estudiantes estan divididos en c cursos, de tal forma que hay m niños por curso.
Entonces c por m es igual a la cantidad total de niños:
c*m = B
Reemplazando esto en la ecuación de arriba podemos obtener:
A + c*m = x
A = x - c*m
Esta es la ecuación que nos da el numero total de niñas en el colegio.
Sí quieres aprender más sobre ecuaciones, puedes leer:
brainly.com/question/18168483
Answer:
D
Step-by-step explanation:
I don't know how to eliminate the wrong answers.
Two line segments which have one end at a diameter and the other end meeting at a common point, make a 90 degree angle.
A is made that way, so A is 90 degrees.
Step-by-step explanation:
6 cm, 8 cm, and 10 cm (B) form a triangle.
The Triangle Inequality Theorem states that the sum of the lesser two sides must be greater than the third.
Answer:
30.4 feet.
Step-by-step explanation:
We have been given the length of the ramp on the blueprint is 7.6 inches. The scale on the blueprint is 1 inch to 4 feet. We are asked to find the actual length of the ramp.
We will use proportions to solve our given problem as:

Now, we will substitute the scale length of ramp in our proportion as:




Therefore, the actual length of the ramp would be 30.4 feet.