1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anestetic [448]
3 years ago
14

Describe three ways you can conserve energy in your own home

Physics
2 answers:
prohojiy [21]3 years ago
7 0
You can turn off the air conditioning
you can keep all electronics off
you can turn off all running water
Mandarinka [93]3 years ago
4 0
Turn lights off, unplug electronics, and use solar energy
You might be interested in
Imagine that an electron in an excited state in a nitrogen molecule decays to its ground state, emitting a photon with a frequen
mash [69]
Since energy cannot be created nor destroyed, the change in energy of the electron must be equal to the energy of the emitted photon.

The energy of the emitted photon is given by:
E=hf
where
h is the Planck constant
f is the photon frequency
Substituting f=8.88 \cdot 10^{14}Hz, we find
E=hf=(6.6 \cdot 10^{-34} Js)(8.88 \cdot 10^{14} Hz)=5.86 \cdot 10^{-19} J

This is the energy given to the emitted photon; it means this is also equal to the energy lost by the electron in the transition, so the variation of energy of the electron will have a negative sign (because the electron is losing energy by decaying from an excited state, with higher energy, to the ground state, with lower energy)
\Delta E= -5.86 \cdot 10^{-19} J
6 0
3 years ago
Read 2 more answers
A crate is placed on an adjustable, incline board. the coefficient of static friction between the crate and the board is 0.29.
sasho [114]

Let the angle be Θ (theta)

Let the mass of the crate be m.

a) When the crate just begins to slip. At that moment the net force will be equal to zero and the static friction will be at the maximum vale.

Normal force (N) = mg CosΘ

μ (coefficient of static friction) = 0.29

Static friction = μN = μmg CosΘ

Now, along the ramp, the equation of net force will be:

mg SinΘ - μmg CosΘ = 0

mg SinΘ = μmg CosΘ

tan Θ = μ

tan Θ = 0.29

Θ = 16.17°

b) Let the acceleration be a.

Coefficient of kinetic friction = μ = 0.26

Now, the equation of net force will be:

mg sinΘ - μ mg CosΘ = ma

a = g SinΘ - μg CosΘ

Plugging the values

a = 9.8 × 0.278 - 0.26 × 9.8 × 0.96

a = 2.7244 - 2.44608

a = 0.278 m/s^2

Hence, the acceleration is 0.278 m/s^2

7 0
3 years ago
Debido al desorden en el laboratorio un científico tiene 2 termómetros diferentes pero no sabe en qué escalas están por lo que d
just olya [345]

Answer:

La escala del termómetro ''A'' es grados Celsius.

La escala del termómetro ''B'' es grados Fahrenheit.

Explanation:

Para hallar en qué escalas están los termómetros partimos de que la mezcla a la cuál se midió su temperatura mantuvo su temperatura constante.

Esto quiere decir que los termómetros están expresando la misma temperatura pero en una escala distinta.

Sabemos que dada una temperatura en grados Celsius ''C'' si la queremos convertir a grados Fahrenheit ''F'' debemos utilizar la siguiente ecuación :

F=(\frac{9}{5})C+32 (I)

Ahora, si reemplazamos y asumimos que la temperatura de 18° es en grados Celsius, entonces si reemplazamos C=18 en la ecuación (I) deberíamos obtener F=64.4 ⇒

F=(\frac{9}{5}).(18)+32=32.4+32=64.4

Efectivamente obtenemos el valor esperado. Finalmente, corroboramos que la temperatura del termómetro ''A'' está medida en grados Celsius y la temperatura del termómetro ''B'' en grados Fahrenheit.

6 0
3 years ago
A car accelerates from 20mi/hr to 60mi/hr. How many times greater is the car's kinetic energy at the higher speed compared to th
Ainat [17]

Answer:

9 times

Explanation:

Kinetic energy is:

KE = ½ mv²

When we triple the velocity, the kinetic energy increases by a factor of 9.

9KE = ½ m(3v)²

4 0
3 years ago
How do we determine the conditions that existed in the very early universe? A We can only guess at the conditions, since we have
lakkis [162]

Answer:

D By looking all the way to the cosmological horizon, we can see the actual conditions that prevailed all the way back to the first instant of the Big Bang.

Explanation:

Astrophysicists are able to determine the conditions that existed in the early universe, by using instruments such as telescopes to observe and study cosmic horizons. More ideas about the early universe can be found from the thermal light present in cosmic backgrounds.

Scientists study these details that provide an insight into the conditions that existed so many years ago. They have been able to determine that the Big Bang involved so many collisions from these observations.

5 0
3 years ago
Other questions:
  • One hazard of space travel is debris left by previous missions. there are several thousand objects orbiting earth that are large
    8·1 answer
  • Running out of time!!! PLEASE HELP
    9·2 answers
  • Keaton is asked to solve the following physics problem:
    6·1 answer
  • Question 10 of 10
    8·1 answer
  • A ball is dropped and bounces off the floor. Its speed is the same immediately before and immediately after the collision. Which
    15·1 answer
  • A 75.3 kg bobsled is pushed along a horizontal surface by two athletes. After the bobsled is pushed a distance of 8.1 m starting
    15·1 answer
  • If you designed a rollercoaster, how might you design it? Would you have friction?
    15·1 answer
  • A boy is playing with a ball of mass 72g attached to a string. He is moving it at constant speed in a horizontal circle of radiu
    15·1 answer
  • A power plant burns coal to generate electricity. Suppose that 1000 J of heat (Q) from the coal fire enters a boiler, which is k
    7·1 answer
  • Mechanical waves form when a source of energy causes a medium to what
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!