1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ivenika [448]
3 years ago
7

Which is the equation of an ellipse centered at the origin with foci on y-axis, major axis of length 20 and minor axis of length

18?
Mathematics
2 answers:
fenix001 [56]3 years ago
7 0

Centered at the origin means (h,k) =(0,0)

Length of major axis, 2a = 20

That gives, a =10

Length of minor axis, 2b =18

That gives, b=9

And since focii is on the y axis, so its a vertical ellipse of the form

\frac{(x-h)^2}{b^2} + \frac{(y-k)^2}{a^2} =1

Substituting the values of a and b, we will get

\frac{x^2}{81}+\frac{y^2}{100}=1

Luden [163]3 years ago
3 0

Answer:

Option C

x^2/81+y^2/100=1

You might be interested in
5 2/5+a=71/2 what is the answer to this problem
Gre4nikov [31]
Answer:
30 1/10

Step by step explanation:
71/2-5 2/5= 30 1/10
30 1/10 divided by a (also know as 1) = 30 1/10
3 0
3 years ago
X/y table for #’s 10 & 11?
Nadya [2.5K]
For number 10 the y-intercept is going to be at -1 1/3 not -1. 
4 0
3 years ago
how to integrate <img src="https://tex.z-dn.net/?f=e%5E%7B2s%7D%20%2ACos%20%5Cfrac%7Bs%7D%7B4%7D" id="TexFormula1" title="e^{2s}
icang [17]

Answer:

\int\limits {e^{2s} cos\frac{s}{4} ds    =\frac{4 e^{2s} }{65 } ({8 cos (\frac{1}{4} ) s +  sin \frac{1}{4}  s} ))

Step-by-step explanation:

<u><em>Step(i):-</em></u>

Given that  f(s) =  e^{2s} cos\frac{s}{4}

Now integrating

            \int\limits {f(s)} \, ds =  \int\limits {e^{2s} cos\frac{s}{4} ds

By using integration formula

   \int\limits { e^{ax} cos b x dx = \frac{e^{ax} }{a^{2}+b^{2}  } ( a cos b x + b sin b x )

<u><em>Step(ii):-</em></u>

 \int\limits {e^{2s} cos\frac{s}{4} ds    =   \frac{e^{2s} }{(2)^{2}+(\frac{1}{4}) ^{2}  } ( 2 cos (\frac{1}{4} ) s + \frac{1}{4}  sin \frac{1}{4}  s ))  

                    = \frac{e^{2s} }{(4+\frac{1}{16})} ( 2 cos (\frac{1}{4} ) s + \frac{1}{4}  sin \frac{1}{4}  s ))

                   = \frac{e^{2s} }{(\frac{65}{16} } ( \frac{8 cos (\frac{1}{4} ) s +  sin \frac{1}{4}  s}{4}  ))

                 = 16 X\frac{e^{2s} }{65 } ( \frac{8 cos (\frac{1}{4} ) s +  sin \frac{1}{4}  s}{4}  ))

                 =\frac{4 e^{2s} }{65 } ({8 cos (\frac{1}{4} ) s +  sin \frac{1}{4}  s} ))

<u><em>Final answer:-</em></u>

\int\limits {e^{2s} cos\frac{s}{4} ds    =\frac{4 e^{2s} }{65 } ({8 cos (\frac{1}{4} ) s +  sin \frac{1}{4}  s} ))

6 0
3 years ago
Expanded form and word form for 3.4
Neko [114]
3+.4

Three and four tenths
7 0
3 years ago
Read 2 more answers
(7х+18)<br> (5х-6)°<br> (3y+11)°
kolbaska11 [484]

Answer:

Find out what x,x,and y is. these are variables. The multiply the number before the variable  by the variable. Then add or subtract and you have the answer.

Step-by-step explanation:

Hope this works.

6 0
3 years ago
Other questions:
  • A grocery store gives away a $10 gift card to every 25th customer and a $20 gift card to every 60th customer. After this custome
    9·1 answer
  • Is 234 divisible by 6
    9·2 answers
  • Multipy (2x + 4 (x - 4) <br><br><br><br><br> Zzz
    8·1 answer
  • A motorist is pumping gas into his car at a rate of 5/12 of a gallon every 1/24 of a minute. At this rate how many gallons of ga
    8·2 answers
  • <img src="https://tex.z-dn.net/?f=4x%2B6%3D11" id="TexFormula1" title="4x+6=11" alt="4x+6=11" align="absmiddle" class="latex-for
    9·2 answers
  • Round 27515 to the nearst thousand
    13·2 answers
  • Pls help me i dont care if u get it wrong it wont bother me but pls help me :/
    12·2 answers
  • A tissue box in the shape of a rectangular prism has a surface area of 158 square inches . The width is 5 inches and the height
    11·1 answer
  • PLS ANSWER! Which movie has more consistent ages?
    12·1 answer
  • Determine the lateral and total surface
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!