Answer:
The inhibitory transmitter activates ligand-gated potassium channels
Explanation:
When a cell is in hyperpolarized state,the potassium gated channels are taken longer time to close up, Therefore, more K+ leaks out of the axoplasm to the exterior.Therefore the cell appears to continue in the resting state, with more negative value of the cell potential of (-120 mV) and this called hyperpolarization.
However, with the addition of inhibitory transmitter,the ligand-gated potassium channels are activated,Theses channels closes up.Then sodium gated channels, which were initially in refractive state reopens, sodium ions diffuses inwards for depolarization, and the neuron returns to depolarized state.
Hey there,
<span>He dug up fossils of gigantic extinct mammals- thus this was significant.
Hope this helps ☺
<em></em>~Top
</span>
<span>This energy comes from the food we eat. Our bodies digest the food we eat by mixing it with fluids (acids and enzymes) in the stomach. When the stomach digests food, the carbohydrate (sugars and starches) in the food breaks down into another type of sugar, called glucose.
hope i helped :)
</span>