Answer: 2.22s
Explanation: wave speed = 450 m/s, A = amplitude = 1.6mm, λ= wavelength = 0.19m
Wave speed = distance traveled / time taken
Distance traveled = 1km = 1000 m
450 = 1000/ t
t = 1000/ 450 = 2.22s
The Moon s escape speed will be smaller than Earth's.
The minimum speed that is required for an object to free itself from the gravitational force exerted by a massive object.
The formula of escape speed is
where
v is escape velocity
G is universal gravitational constant
M is mass of the body to be escaped from
r is distance from the center of the mass
we can say that,
Escape speed depends on the gravity of the object trying to hold the spacecraft from escaping.
we know that,
The Moon's surface gravity is about 1/6th as powerful or about 1.6 meters per second per second.
since, v ∝ g
The Moon s escape speed will be smaller than Earth's.
Learn more about escape speed here:
<u>brainly.com/question/15318861</u>
#SPJ4
Answer:
Radio waves have the longest wavelengths in the EM spectrum, according to NASA, ranging from about 0.04 inches (1 millimeter) to more than 62 miles (100 kilometers).
Band Frequency range Wavelength range
Very Low Frequency (VLF) 3 to 30 kHz 10 to 100 km
Low Frequency (LF) 30 to 300 kHz 1 m to 10 km
Explanation:
Answer:
The final velocity of the vehicle is 10.39 m/s.
Explanation:
Given;
acceleration of the vehicle, a = 2.7 m/s²
distance moved by the vehicle, d = 20 m
The final velocity of the vehicle is calculated using the following kinematic equation;
v² = u² + 2ah
v² = 0 + 2 x 2.7 x 20
v² = 108
v = √108
v = 10.39 m/s
Therefore, the final velocity of the vehicle is 10.39 m/s.