- The balance between the chemical and electrical forces pushing potassium through potassium channels and across the membrane is represented by the potassium equilibrium potential.
- At the equilibrium potential of potassium, which is -80mV, there is no net movement of potassium ions.
<h3>At potassium's equilibrium potential, what happens?</h3>
- At equilibrium, the electrical potential gradient across the membrane precisely balances the gradient of K+ concentration.
- There is no net migration of K+ from one side to the other, despite the fact that K+ ions continue to traverse the membrane via channels.
<h3>How does potassium diffuse in order to influence the membrane potential?</h3>
- Potassium ions will flow down their concentration gradient, or towards the exterior of the cell, because the membrane is permeable to them.
- Although the membrane is not permeable to sodium, there is a concentration gradient that favors sodium diffusion in the opposite direction.
To learn more about equilibrium potential visit:
brainly.com/question/28250005
#SPJ4
There must be a change in the chemical composition of the substance and the change is highly irreversible
<h3>
NEUTRONS AND PROTONS</h3>
The nucleus is a collection of particles called protons, which are positively charged, and neutrons, which are electrically neutral. Protons and neutrons are in turn made up of particles called quarks. The chemical element of an atom is determined by the number of protons, or the atomic number, Z, of the nucleus.
Answer:
the way its set up its kind of confusing
Explanation:
Please post the questions