If jack sells 3 subscriptions in an hour and sue sells 5 subscriptions in an hour they will both earn $18 per hour
Answer:
<u>ALTERNATIVE 1</u>
a. Find the profit function in terms of x.
P(x) = R(x) - C(x)
P(x) = (-60x² + 275x) - (50000 + 30x)
P(x) = -60x² + 245x - 50000
b. Find the marginal cost as a function of x.
C(x) = 50000 + 30x
C'(x) = 0 + 30 = 30
c. Find the revenue function in terms of x.
R(x) = x · p
R(x) = x · (275 - 60x)
R(x) = -60x² + 275x
d. Find the marginal revenue function in terms of x.
R'(x) = (-60 · 2x) + 275
R'(x) = -120x + 275
The answers do not make a lot of sense, specially the profit and marginal revenue functions. I believe that the question was not copied correctly and the price function should be p = 275 - x/60
<u>ALTERNATIVE 2</u>
a. Find the profit function in terms of x.
P(x) = R(x) - C(x)
P(x) = (-x²/60 + 275x) - (50000 + 30x)
P(x) = -x²/60 + 245x - 50000
b. Find the marginal cost as a function of x.
C(x) = 50000 + 30x
C'(x) = 0 + 30 = 30
c. Find the revenue function in terms of x.
R(x) = x · p
R(x) = x · (275 - x/60)
R(x) = -x²/60 + 275x
d. Find the marginal revenue function in terms of x.
R(x) = -x²/60 + 275x
R'(x) = -x/30 + 275
Answer:
The numbers are 10 and 40.
Step-by-step explanation:
x+4x=50
Answer:
y=-12, 0, 0,0,4
Step-by-step explanation:
They are all in order all you have to do is plug in the x value were the x is so like this
4(-2)-4 do it like that with every number from the x value then they are right







The first case occurs in

for

and

. Extending the domain to account for all real

, we have this happening for

and

, where

.
The second case occurs in

when

, and extending to all reals we have

for

, i.e. any even multiple of

.