Answer:
0.999987
Step-by-step explanation:
Given that
The user is a legitimate one = E₁
The user is a fraudulent one = E₂
The same user originates calls from two metropolitan areas = A
Use Bay's Theorem to solve the problem
P(E₁) = 0.0131% = 0.000131
P(E₂) = 1 - P(E₁) = 0.999869
P(A/E₁) = 3% = 0.03
P(A/E₂) = 30% = 0.3
Given a randomly chosen user originates calls from two or more metropolitan, The probability that the user is fraudulent user is :




= 0.999986898 ≈ 0.999987
D is correct for this problem
Find the Greatest Common Factor (GCF)
<u>GCF = 6y^6</u>
Factor out the GCF. (Write the GCF first. Then, in parenthesis divide each term by the GCF.)
6y^6(24y^8/6y^6 + 6y^6/6y^6)
Simplify each term in parenthesis
<u>6y^6(4y^2 + 1)</u>
x = y^2 + 10y + 22
Divide 10 by 2 to give 5 which becaoses the second term in the parentheses
x = (y + 5)^2 - 25 + 22
x = (y + 5)^2 - 3 Answer.
The answer is D.
Because you want to find the rewrite way of distributive right? 2(9+3)
Therefore it’s (2x9) + (2x3)